ﻻ يوجد ملخص باللغة العربية
In this work, we consider the generalized variable-coefficient nonlinear Schr{o}dinger equation with non-vanishing boundary conditions at infinity including the simple and double poles of the scattering coefficients. By introducing an appropriate Riemann surface and uniformization coordinate variable, we first convert the double-valued functions which occur in the process of direct scattering to single-value functions. Then, we establish the direct scattering problem via analyzing the analyticity, symmetries and asymptotic behaviors of Jost functions and scattering matrix derived from Lax pairs of the equation. Based on these results, a generalized Riemann-Hilbert problem is successfully established for the equation. The discrete spectrum and residual conditions, trace foumulae and theta conditions are investigated systematically including the simple poles case and double poles case. Moreover, the inverse scattering problem is solved via the Riemann-Hilbert approach. Finally, under the condition of reflection-less potentials, the soliton and breather solutions are well derived. Via evaluating the impact of each parameters, some interesting phenomena of these solutions are analyzed graphically.
We consider a matrix Riemann-Hilbert problem for the sextic nonlinear Schr{o}dinger equation with a non-zero boundary conditions at infinity. Before analyzing the spectrum problem, we introduce a Riemann surface and uniformization coordinate variable
The Riemann-Hilbert (RH) problem is first developed to study the focusing nonlinear Schr{o}dinger (NLS) equation with multiple high-order poles under nonzero boundary conditions. Laurent expansion and Taylor series are employed to replace the residue
We derive a straightforward variational method to construct embedded soliton solutions of the third-order nonlinear Schodinger equation and analytically demonstrate that these solitons exist as a continuous family. We argue that a particular embedded
We analyze dynamical properties of the logarithmic Schr{o}dinger equation under a quadratic potential. The sign of the nonlinearity is such that it is known that in the absence of external potential, every solution is dispersive, with a universal asy
We consider the large time behavior in two types of equations, posed on the whole space R^d: the Schr{o}dinger equation with a logarithmic nonlinearity on the one hand; compressible, isothermal, Euler, Korteweg and quantum Navier-Stokes equations on