ﻻ يوجد ملخص باللغة العربية
The Kalman filter is the most powerful tool for estimation of the states of a linear Gaussian system. In addition, using this method, an expectation maximization algorithm can be used to estimate the parameters of the model. However, this algorithm cannot function in real time. Thus, we propose a new method that can be used to estimate the transition matrices and the states of the system in real time. The proposed method uses three ideas: estimation in an observation space, a time-invariant interval, and an online learning framework. Applied to damped oscillation model, we have obtained extraordinary performance to estimate the matrices. In addition, by introducing localization and spatial uniformity to the proposed method, we have demonstrated that noise can be reduced in high-dimensional spatio-temporal data. Moreover, the proposed method has potential for use in areas such as weather forecasting and vector field analysis.
This work proposes a resilient and adaptive state estimation framework for robots operating in perceptually-degraded environments. The approach, called Adaptive Maximum Correntropy Criterion Kalman Filtering (AMCCKF), is inherently robust to corrupte
In this paper, we propose an approach to address the problems with ambiguity in tuning the process and observation noises for a discrete-time linear Kalman filter. Conventional approaches to tuning (e.g. using normalized estimation error squared and
The aim of this paper is to propose a new numerical approximation of the Kalman-Bucy filter for semi-Markov jump linear systems. This approximation is based on the selection of typical trajectories of the driving semi-Markov chain of the process by u
This paper studies the distributed state estimation in sensor network, where $m$ sensors are deployed to infer the $n$-dimensional state of a linear time-invariant (LTI) Gaussian system. By a lossless decomposition of optimal steady-state Kalman filt
Inertial measurement units are widely used in different fields to estimate the attitude. Many algorithms have been proposed to improve estimation performance. However, most of them still suffer from 1) inaccurate initial estimation, 2) inaccurate ini