ﻻ يوجد ملخص باللغة العربية
When the Schr{o}dinger equation for stationary states is studied for a system described by a central potential in $n$-dimensional Euclidean space, the radial part of stationary states is an even function of a parameter $lambda$ which is a linear combination of angular momentum quantum number $l$ and dimension $n$, i.e., $lambda=l+{(n-2)over 2}$. Thus, without setting a priori $n=3$, complex values of $lambda$ can be achieved, in particular, by keeping $l$ real and complexifying $n$. For suitable values of such an auxiliary complexified dimension, it is therefore possible to obtain results on scattering amplitude and phase shift that are completely equivalent to the results obtained in the sixties for Yukawian potentials in $mathbb{R}^3$. Moreover, if both $l$ and $n$ are complexified, the possibility arises of recovering the partial wave amplitude from residues of a function of two complex variables. Thus, the complex angular momentum formalism can be imbedded into a broader framework, where a correspondence exists between the scattering amplitude and a skew curve in $mathbb{R}^3$.
We study Feynman integrals and scattering amplitudes in ${cal N}=4$ super-Yang-Mills by exploiting the duality with null polygonal Wilson loops. Certain Feynman integrals, including one-loop and two-loop chiral pentagons, are given by Feynman diagram
We solve the Klein-Gordon equation in the presence of a spatially one-dimensional cusp potential. The scattering solutions are obtained in terms of Whittaker functions and the condition for the existence of transmission resonances is derived. We show
A salient feature of the Schr{o}dinger equation is that the classical radial momentum term $p_{r}^{2}$ in polar coordinates is replaced by the operator $hat{P}^{dagger}_{r} hat{P}_{r}$, where the operator $hat{P}_{r}$ is not hermitian in general. Thi
In this paper, we discuss tensor network descriptions of AdS/CFT from two different viewpoints. First, we start with an Euclidean path-integral computation of ground state wave functions with a UV cut off. We consider its efficient optimization by ma
We comment on the status of Steinmann-like constraints, i.e. all-loop constraints on consecutive entries of the symbol of scattering amplitudes and Feynman integrals in planar ${cal N}=4$ super-Yang-Mills, which have been crucial for the recent progr