ﻻ يوجد ملخص باللغة العربية
Word order variances generally exist in different languages. In this paper, we hypothesize that cross-lingual models that fit into the word order of the source language might fail to handle target languages. To verify this hypothesis, we investigate whether making models insensitive to the word order of the source language can improve the adaptation performance in target languages. To do so, we reduce the source language word order information fitted to sequence encoders and observe the performance changes. In addition, based on this hypothesis, we propose a new method for fine-tuning multilingual BERT in downstream cross-lingual sequence labeling tasks. Experimental results on dialogue natural language understanding, part-of-speech tagging, and named entity recognition tasks show that reducing word order information fitted to the model can achieve better zero-shot cross-lingual performance. Furthermore, our proposed methods can also be applied to strong cross-lingual baselines, and improve their performances.
Current state-of-the-art models for sentiment analysis make use of word order either explicitly by pre-training on a language modeling objective or implicitly by using recurrent neural networks (RNNs) or convolutional networks (CNNs). This is a probl
Prior studies show that cross-lingual semantic role labeling (SRL) can be achieved by model transfer under the help of universal features. In this paper, we fill the gap of cross-lingual SRL by proposing an end-to-end SRL model that incorporates a va
Cross-lingual representations of words enable us to reason about word meaning in multilingual contexts and are a key facilitator of cross-lingual transfer when developing natural language processing models for low-resource languages. In this survey,
Generative adversarial networks (GANs) have succeeded in inducing cross-lingual word embeddings -- maps of matching words across languages -- without supervision. Despite these successes, GANs performance for the difficult case of distant languages i
Despite interest in using cross-lingual knowledge to learn word embeddings for various tasks, a systematic comparison of the possible approaches is lacking in the literature. We perform an extensive evaluation of four popular approaches of inducing c