ﻻ يوجد ملخص باللغة العربية
We use multiple quantum (MQ) NMR dynamics of a gas of spin-carrying molecules in nanocavities at high and low temperatures for an investigation of many-particle entanglement. A distribution of MQ NMR intensities is obtained at high and low temperatures in a system of 201 spins 1/2. The second moment of the distribution, which provides a lower bound on the quantum Fisher information, sheds light on the many-particle entanglement in the system. The dependence of the many-particle entanglement on the temperature is investigated. Almost all spins are entangled at low temperatures.
Multiple quantum (MQ) NMR with a dipolar ordered initial state opens new possibilities for the exploration of many-spin entanglement. In this paper, we investigate many-spin entanglement in a gas of spin-carrying molecules (atoms) in nanocavities in
We investigate the evolution of entanglement in multiple-quantum (MQ) NMR experiments in crystals with pairs of close nuclear spins-1/2. The initial thermodynamic equilibrium state of the system in a strong external magnetic field evolves under the n
We elucidate the relationship between Schrodinger-cat-like macroscopicity and geometric entanglement, and argue that these quantities are not interchangeable. While both properties are lost due to decoherence, we show that macroscopicity is rare in u
We introduce a general scheme of many-particle interferometry in which two identical sources are used and which-way information is eliminated by making the paths of one or more particles identical (path identity). The scheme allows us to generate man
Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are well-established techniques that provide valuable information in a diverse set of disciplines but are currently limited to macroscopic sample volumes. Here we demonstrate nanos