ﻻ يوجد ملخص باللغة العربية
This paper presents a pedestrian motion model that includes both low level trajectory patterns, and high level discrete transitions. The inclusion of both levels creates a more general predictive model, allowing for more meaningful prediction and reasoning about pedestrian trajectories, as compared to the current state of the art. The model uses an iterative clustering algorithm with (1) Dirichlet Process Gaussian Processes to cluster trajectories into continuous motion patterns and (2) hypothesis testing to identify discrete transitions in the data called transition points. The model iteratively splits full trajectories into sub-trajectory clusters based on transition points, where pedestrians make discrete decisions. State transition probabilities are then learned over the transition points and trajectory clusters. The model is for online prediction of motions, and detection of anomalous trajectories. The proposed model is validated on the Duke MTMC dataset to demonstrate identification of low level trajectory clusters and high level transitions, and the ability to predict pedestrian motion and detect anomalies online with high accuracy.
Trajectory prediction is one of the key capabilities for robots to safely navigate and interact with pedestrians. Critical insights from human intention and behavioral patterns need to be integrated to effectively forecast long-term pedestrian behavi
Automation of excavation tasks requires real-time trajectory planning satisfying various constraints. To guarantee both constraint feasibility and real-time trajectory re-plannability, we present an integrated framework for real-time optimization-bas
Motion planning for multi-jointed robots is challenging. Due to the inherent complexity of the problem, most existing works decompose motion planning as easier subproblems. However, because of the inconsistent performance metrics, only sub-optimal so
This paper describes an image based visual servoing (IBVS) system for a nonholonomic robot to achieve good trajectory following without real-time robot pose information and without a known visual map of the environment. We call it trajectory servoing
For automated vehicles (AVs) to reliably navigate through crosswalks, they need to understand pedestrians crossing behaviors. Simple and reliable pedestrian behavior models aid in real-time AV control by allowing the AVs to predict future pedestrian