ترغب بنشر مسار تعليمي؟ اضغط هنا

Scanned single-electron probe inside a silicon electronic device

58   0   0.0 ( 0 )
 نشر من قبل Kevin Ng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solid-state devices can be fabricated at the atomic scale, with applications ranging from classical logic to current standards and quantum technologies. While it is very desirable to probe these devices and the quantum states they host at the atomic scale, typical methods rely on long-ranged capacitive interactions, making this difficult. Here we probe a silicon electronic device at the atomic scale using a localized electronic quantum dot induced directly within the device at a desired location, using the biased tip of a low-temperature scanning tunneling microscope. We demonstrate control over short-ranged tunnel coupling interactions of the quantum dot with the devices source reservoir using sub-nm position control of the tip, and the quantum dot energy level using a voltage applied to the devices gate reservoir. Despite the $sim 1$nm proximity of the quantum dot to the metallic tip, we find the gate provides sufficient capacitance to enable a high degree of electric control. Combined with atomic scale imaging, we use the quantum dot to probe applied electric fields and charge in individual defects in the device. This capability is expected to aid in the understanding of atomic-scale devices and the quantum states realized in them.



قيم البحث

اقرأ أيضاً

High spatial resolution magnetic imaging has driven important developments in fields ranging from materials science to biology. However, to uncover finer details approaching the nanoscale with greater sensitivity requires the development of a radical ly new sensor technology. The nitrogen-vacancy (NV) defect in diamond has emerged as a promising candidate for such a sensor based on its atomic size and quantum-limited sensing capabilities afforded by long spin coherence times. Although the NV center has been successfully implemented as a nanoscale scanning magnetic probe at room temperature, it has remained an outstanding challenge to extend this capability to cryogenic temperatures, where many solid-state systems exhibit non-trivial magnetic order. Here we present NV magnetic imaging down to 6 K with 6 nm spatial resolution and 3 {mu}T/$sqrt{mbox{Hz}}$ field sensitivity, first benchmarking the technique with a magnetic hard disk sample, then utilizing the technique to image vortices in the iron pnictide superconductor BaFe$_2$(As$_{0.7}$P$_{0.3}$)$_2$ with $T_c$ = 30 K. The expansion of NV-based magnetic imaging to cryogenic temperatures represents an important advance in state-of-the-art magnetometry, which will enable future studies of heretofore inaccessible nanoscale magnetism in condensed matter systems.
Understanding ultrafast coherent electron dynamics is necessary for application of a single-electron source to metrological standards, quantum information processing, including electron quantum optics, and quantum sensing. While the dynamics of an el ectron emitted from the source has been extensively studied, there is as yet no study of the dynamics inside the source. This is because the speed of the internal dynamics is typically higher than 100 GHz, beyond state-of-the-art experimental bandwidth. Here, we theoretically and experimentally demonstrate that the internal dynamics in a silicon singleelectron source comprising a dynamic quantum dot can be detected, utilising a resonant level with which the dynamics is read out as gate-dependent current oscillations. Our experimental observation and simulation with realistic parameters show that an electron wave packet spatially oscillates quantum-coherently at $sim$ 200 GHz inside the source. Our results will lead to a protocol for detecting such fast dynamics in a cavity and offer a means of engineering electron wave packets. This could allow high-accuracy current sources, high-resolution and high-speed electromagnetic-field sensing, and high-fidelity initialisation of flying qubits.
Colour centres with long-lived spins are established platforms for quantum sensing and quantum information applications. Colour centres exist in different charge states, each of them with distinct optical and spin properties. Application to quantum t echnology requires the capability to access and stabilize charge states for each specific task. Here, we investigate charge state manipulation of individual silicon vacancies in silicon carbide, a system which has recently shown a unique combination of long spin coherence time and ultrastable spin-selective optical transitions. In particular, we demonstrate charge state switching through the bias applied to the colour centre in an integrated silicon carbide opto-electronic device. We show that the electronic environment defined by the doping profile and the distribution of other defects in the device plays a key role for charge state control. Our experimental results and numerical modeling evidence that control of these complex interactions can, under certain conditions, enhance the photon emission rate. These findings open the way for deterministic control over the charge state of spin-active colour centres for quantum technology and provide novel techniques for monitoring doping profiles and voltage sensing in microscopic devices.
We investigate a hybrid structure consisting of $20pm4$ implanted $^{31}$P atoms close to a gate-induced silicon single electron transistor (SiSET). In this configuration, the SiSET is extremely sensitive to the charge state of the nearby centers, tu rning from the off state to the conducting state when the charge configuration is changed. We present a method to measure fast electron tunnel rates between donors and the SiSET island, using a pulsed voltage scheme and low-bandwidth current detection. The experimental findings are quantitatively discussed using a rate equation model, enabling the extraction of the capture and emission rates.
242 - Thomas Quaglio 2012
We present a combined scanning force and tunneling microscope working in a dilution refrigerator that is optimized for the study of individual electronic nano-devices. This apparatus is equipped with commercial piezo-electric positioners enabling the displacement of a sample below the probe over several hundred microns at very low temperature, without excessive heating. Atomic force microscopy based on a tuning fork resonator probe is used for cryogenic precise alignment of the tip with an individual device. We demonstrate the local tunneling spectroscopy of a hybrid Josephson junction as a function of its current bias.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا