ﻻ يوجد ملخص باللغة العربية
In this paper, we propose fixed-order set-valued (in the form of l2-norm hyperballs) observers for some classes of nonlinear bounded-error dynamical systems with unknown input signals that simultaneously find bounded hyperballs of states and unknown inputs that include the true states and inputs. Necessary and sufficient conditions in the form of Linear Matrix Inequalities (LMIs) for the stability (in the sense of quadratic stability) of the proposed observers are derived for ($mathcal{M},gamma$)- Quadratically Constrained (($mathcal{M},gamma$)-QC) systems, which includes several classes of nonlinear systems: (I) Lipschitz continuous, (II) ($mathcal{A},gamma$)-QC* and (III) Linear Parameter-Varying (LPV) systems. This new quadratic constraint property is at least as general as the incremental quadratic constraint property for nonlinear systems and is proven in the paper to embody a broad range of nonlinearities. In addition, we design the optimal $mathcal{H}_{infty}$ observer among those that satisfy the quadratic stability conditions and show that the design results in Uniformly Bounded-Input Bounded-State (UBIBS) estimate radii/error dynamics and uniformly bounded sequences of the estimate radii. Furthermore, we provide closed-form upper bound sequences for the estimate radii and sufficient condition for their convergence to steady state. Finally, the effectiveness of the proposed set-valued observers is demonstrated through illustrative examples, where we compare the performance of our observers with some existing observers.
In this paper, we study the problem of designing a simultaneous mode, input, and state set-valued observer for a class of hidden mode switched nonlinear systems with bounded-norm noise and unknown input signals, where the hidden mode and unknown inpu
We address the problem of designing simultaneous input and state interval observers for Lipschitz continuous nonlinear systems with rank-deficient feedthrough, unknown inputs and bounded noise signals. Benefiting from the existence of nonlinear decom
A simultaneous input and state interval observer is presented for Lipschitz continuous nonlinear systems with unknown inputs and bounded noise signals for the case when the direct feedthrough matrix has full column rank. The observer leverages the ex
We study the problem of designing interval-valued observers that simultaneously estimate the system state and learn an unknown dynamic model for partially unknown nonlinear systems with dynamic unknown inputs and bounded noise signals. Leveraging aff
Parameters of the mathematical model describing many practical dynamical systems are prone to vary due to aging or renewal, wear and tear, as well as changes in environmental or service conditions. These variabilities will adversely affect the accura