ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal bolometric corrections for AGN over 7 luminosity decades

116   0   0.0 ( 0 )
 نشر من قبل Federica Duras
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The AGN bolometric correction is a key element to understand BH demographics and compute accurate BH accretion histories from AGN luminosities. However, current estimates still differ from each other by up to a factor of two to three, and rely on extrapolations at the lowest and highest luminosities. Here we revisit this fundamental issue presenting general hard X-ray ($K_{X}$) and optical ($K_{O}$) bolometric corrections, computed combining several AGN samples spanning the widest (about 7 dex) luminosity range ever used for this kind of studies. We analysed a total of $sim 1000$ type 1 and type 2 AGN for which a dedicated SED-fitting has been carried out. We provide a bolometric correction separately for type 1 and type 2 AGN; the two bolometric corrections results to be in agreement in the overlapping luminosity range and therefore, for the first time, a universal bolometric correction for the whole AGN sample (both type 1 and type 2) has been computed. We found that $K_{X}$ is fairly constant at $log(L_{BOL}/L_{odot}) < 11$, while it increases up to about one order of magnitude at $log(L_{BOL}/L_{odot}) sim 14.5$. A similar increasing trend has been observed when its dependence on either the Eddington ratio or the BH mass is considered, while no dependence on redshift up to $zsim3.5$ has been found. On the contrary, the optical bolometric correction appears to be fairly constant (i.e. $K_{O} sim 5$) whatever is the independent variable. We also verified that our bolometric corrections correctly predict the AGN bolometric luminosity functions. According to this analysis, our bolometric corrections can be applied to the whole AGN population in a wide range of luminosity and redshift.



قيم البحث

اقرأ أيضاً

We present quasar bolometric corrections using the [O III] $lambda5007$ narrow emission line luminosity based on the detailed spectral energy distributions of 53 bright quasars at low to moderate redshift ($0.0345<z<1.0002$). We adopted two functiona l forms to calculate $L_{textrm{iso}}$, the bolometric luminosity determined under the assumption of isotropy: $L_{textrm{iso}}=A,L_{[O,III]}$ for comparison with the literature and log$(L_{iso})=B+C,$log$(L_{[O,III]})$, which better characterizes the data. We also explored whether Eigenvector 1, which describes the range of quasar spectral properties and quantifies their diversity, introduces scatter into the $L_{[O,III]}-L_{iso}$ relationship. We found that the [O III] bolometric correction can be significantly improved by adding a term including the equivalent width ratio $R_{Fe,II}equiv EW_{Fe,II}/EW_{Hbeta}$, which is an Eigenvector 1 indicator. Inclusion of $R_{Fe,II}$ in predicting $L_{iso}$ is significant at nearly the $3sigma$ level and reduces the scatter and systematic offset of the luminosity residuals. Typically, [O III] bolometric corrections are adopted for Type 2 sources where the quasar continuum is not observed and in these cases, $R_{Fe,II}$ cannot be measured. We searched for an alternative measure of Eigenvector 1 that could be measured in the optical spectra of Type 2 sources but were unable to identify one. Thus, the main contribution of this work is to present an improved [O III] bolometric correction based on measured bolometric luminosities and highlight the Eigenvector 1 dependence of the correction in Type 1 sources.
In this paper, we provide updated constraints on the bolometric quasar luminosity function (QLF) from $z=0$ to $z=7$. The constraints are based on an observational compilation that includes observations in the rest-frame IR, B band, UV, soft and hard X-ray in past decades. Our method follows Hopkins et al. 2007 with an updated quasar SED model and bolometric and extinction corrections. The new best-fit bolometric quasar luminosity function behaves qualitatively different from the Hopkins et al. 2007 model at high redshift. Compared with the old model, the number density normalization decreases towards higher redshift and the bright-end slope is steeper at $zgtrsim 2$. Due to the paucity of measurements at the faint end, the faint end slope at $zgtrsim 5$ is quite uncertain. We present two models, one featuring a progressively steeper faint-end slope at higher redshift and the other featuring a shallow faint-end slope at $zgtrsim 5$. Further multi-band observations of the faint-end QLF are needed to distinguish between these models. The evolutionary pattern of the bolometric QLF can be interpreted as an early phase likely dominated by the hierarchical assembly of structures and a late phase likely dominated by the quenching of galaxies. We explore the implications of this model on the ionizing photon production by quasars, the CXB spectrum, the SMBH mass density and mass functions. The predicted hydrogen photoionization rate contributed by quasars is subdominant during the epoch of reionization and only becomes important at $zlesssim 3$. The predicted CXB spectrum, cosmic SMBH mass density and SMBH mass function are generally consistent with existing observations.
175 - Sascha Trippe 2015
The masses of supermassive black holes in active galactic nuclei (AGN) can be derived spectroscopically via virial mass estimators based on selected broad optical/ultraviolet emission lines. These estimates commonly use the line width as a proxy for the gas speed and the monochromatic continuum luminosity as a proxy for the radius of the broad line region. However, if the size of the broad line region scales with bolometric rather than monochromatic AGN luminosity, mass estimates based on different emission lines will show a systematic discrepancy which is a function of the color of the AGN continuum. This has actually been observed in mass estimates based on H-alpha / H-beta and C IV lines, indicating that AGN broad line regions indeed scale with bolometric luminosity. Given that this effect seems to have been overlooked as yet, currently used single-epoch mass estimates are likely to be biased.
110 - A. Lamastra , S. Bianchi , G. Matt 2009
There have been recent claims that a significant fraction of type 2 AGN accrete close or even above the Eddington limit. In type 2 AGN the bolometric luminosity (L_b) is generally inferred from the [OIII] emission line luminosity (L_OIII). The key is sue, in order to estimate the bolometric luminosity in these AGN, is therefore to know the bolometric correction to be applied to L_OIII. A complication arises from the fact that the observed L_OIII is affected by extinction, likely due to dust within the narrow line region. The extinction-corrected [OIII] luminosity (L^c_OIII) is a better estimator of the nuclear luminosity than L_OIII. However, so far only the bolometric correction to be applied to the uncorrected L_OIII has been evaluated. This paper is devoted to estimate the bolometric correction C_OIII=L_b/L^c_OIII in order to derive the Eddington ratios for the type 2 AGN in a sample of SDSS objects. We have collected from the literature 61 sources with reliable estimate of both L^c_OIII and X-ray luminosities (L_X). To estimate C_OIII, we combined the observed correlation between L^c_OIII and L_X with the X-ray bolometric correction. We found, contrary to previous studies, a linear correlation between L^c_OIII and L_X. We estimated C_OIII using the luminosity-dependent X-ray bolometric correction of Marconi et al. (2004), and we found a mean value of C_OIII in the luminosity ranges log L_OIII=38-40, 40-42, and 42-44 of 87, 142 and 454 respectively. We used it to calculate the Eddington ratio distribution of type 2 SDSS AGN at 0.3<z<0.4 and we found that these sources are not accreting near their Eddington limit, contrary to previous claims.
286 - S. Bianchi , P. De Vis , S. Viaene 2018
We study the fraction of stellar radiation absorbed by dust, f_abs, in 814 galaxies of different morphological types. The targets constitute the vast majority (93%) of the DustPedia sample, including almost all large (optical diameter larger than 1), nearby (v <= 3000 km/s) galaxies observed with the Herschel Space Observatory. For each object, we model the spectral energy distribution from the ultraviolet to the sub-millimetre using the dedicated, aperture-matched DustPedia photometry and the fitting code CIGALE. The value of f_abs is obtained from the total luminosity emitted by dust and from the bolometric luminosity, which are estimated by the fit. On average, 19% of the stellar radiation is absorbed by dust in DustPedia galaxies. The fraction rises to 25% if only late-type galaxies are considered. The dependence of f_abs on morphology, showing a peak for Sb-Sc galaxies, is weak; it reflects a stronger, yet broad, positive correlation with the bolometric luminosity, which is identified for late-type, disk-dominated, high-specific-star-formation rate, gas-rich objects. We find no variation of f_abs with inclination, at odds with radiative transfer models of edge-on galaxies. These results call for a self-consistent modelling of the evolution of the dust mass and geometry along the build-up of the stellar content. We also provide template spectral energy distributions in bins of morphology and luminosity and study the variation of f_abs with stellar mass and specific star formation rate. We confirm that the local Universe is missing the high f_abs}, luminous and actively star-forming objects necessary to explain the energy budget in observations of the extragalactic background light.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا