ﻻ يوجد ملخص باللغة العربية
Let $Sigma (X,mathbb{C})$ denote the collection of all the rings between $C^*(X,mathbb{C})$ and $C(X,mathbb{C})$. We show that there is a natural correlation between the absolutely convex ideals/ prime ideals/maximal ideals/$z$-ideals/$z^circ$-ideals in the rings $P(X,mathbb{C})$ in $Sigma(X,mathbb{C})$ and in their real-valued counterparts $P(X,mathbb{C})cap C(X)$. It is shown that the structure space of any such $P(X,mathbb{C})$ is $beta X$. We show that for any maximal ideal $M$ in $C(X,mathbb{C}), C(X,mathbb{C})/M$ is an algebraically closed field. We give a necessary and sufficient condition for the ideal $C_{mathcal{P}}(X,mathbb{C})$ of $C(X,mathbb{C})$ to be a prime ideal, and we examine a few special cases thereafter.
A proper ideal $I$ in a commutative ring with unity is called a $z^circ$-ideal if for each $a$ in $I$, the intersection of all minimal prime ideals in $R$ which contain $a$ is contained in $I$. For any totally ordered field $F$ and a completely $F$-r
Two separated realcompact measurable spaces $(X,mathcal{A})$ and $(Y,mathcal{B})$ are shown to be isomorphic if and only if the rings $mathcal{M}(X,mathcal{A})$ and $mathcal{M}(Y,mathcal{B})$ of all real valued measurable functions over these two spa
A.V.Arkhangelskii asked in 1981 if the variety $mathfrak V$ of topological groups generated by free topological groups on metrizable spaces coincides with the class of all topological groups. We show that if there exists a real-valued measurable card
With a complete Heyting algebra $L$ as the truth value table, we prove that the collections of open filters of stratified $L$-valued topological spaces form a monad. By means of $L$-Scott topology and the specialization $L$-order, we get that the alg
The linear continuity of a function defined on a vector space means that its restriction on every affine line is continuous. For functions defined on $mathbb R^m$ this notion is near to the separate continuity for which it is required only the contin