ترغب بنشر مسار تعليمي؟ اضغط هنا

Analogy between freezing lakes and the cosmic radiation era

81   0   0.0 ( 0 )
 نشر من قبل Valerio Faraoni
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Valerio Faraoni




اسأل ChatGPT حول البحث

An equation describing a one-dimensional model for the freezing of lakes is shown to be formally analogous to the Friedmann equation of cosmology. The analogy is developed and used to speculate on the change between two hypothetical spacetime phases in the early universe.

قيم البحث

اقرأ أيضاً

207 - Yi-Zen Chu , Yen-Wei Liu 2021
Cherenkov radiation may occur whenever the source is moving faster than the waves it generates. In a radiation dominated universe, with equation-of-state $w = 1/3$, we have recently shown that the Bardeen scalar-metric perturbations contribute to the linearized Weyl tensor in such a manner that its wavefront propagates at acoustic speed $sqrt{w}=1/sqrt{3}$. In this work, we explicitly compute the shape of the Bardeen Cherenkov cone and wedge generated respectively by a supersonic point mass (approximating a primordial black hole) and a straight Nambu-Goto wire (approximating a cosmic string) moving perpendicular to its length. When the black hole or cosmic string is moving at ultra-relativistic speeds, we also calculate explicitly the sudden surge of scalar-metric induced tidal forces on a pair of test particles due to the passing Cherenkov shock wave. These forces can stretch or compress, depending on the orientation of the masses relative to the shock fronts normal.
The optical medium analogy of a radiation field generated by either an exact gravitational plane wave or an exact electromagnetic wave in the framework of general relativity is developed. The equivalent medium of the associated background field is in homogeneous and anisotropic in the former case, whereas it is inhomogeneous but isotropic in the latter. The features of light scattering are investigated by assuming the interaction region to be sandwiched between two flat spacetime regions, where light rays propagate along straight lines. Standard tools of ordinary wave optics are used to study the deflection of photon paths due to the interaction with the radiation fields, allowing for a comparison between the optical properties of the equivalent media associated with the different background fields.
Landslides plunging into lakes and reservoirs can result in extreme wave runup at shores. This phenomenon has claimed lives and caused damage to near-shore properties. Landslide tsunamis in lakes are different from typical earthquake tsunamis in the open ocean in that (i) the affected areas are usually within the near-field of the source, (ii) the highest runup occurs within the time period of the geophysical event, and (iii) the enclosed geometry of a lake does not let the tsunami energy escape. To address the problem of transient landslide tsunami runup and to predict the resulting inundation, we utilize a nonlinear model equation in the Lagrangian frame of reference. The motivation for using such a scheme lies in the fact that the runup on an inclined boundary is directly and readily computed in the Lagrangian framework without the need to resort to approximations. In this work, we investigate the inundation patterns due to landslide tsunamis in a lake. We show by numerical computations that Airys approximation of an irrotational theory using Lagrangian coordinates can legitimately predict runup of large amplitude. We also demonstrate that in a lake of finite size the highest runup may be magnified by constructive interference between edge-waves that are trapped along the shore and multiple reflections of outgoing waves from opposite shores, and may occur somewhat later after the first inundation.
In this review paper we investigate the connection between gravity and electromagnetism from Faraday to the present day. The particular focus is on the connection between gravitational and electromagnetic radiation. We discuss electromagnetic radiati on produced when a gravitational wave passes through a magnetic field. We then discuss the interaction of electromagnetic radiation with gravitational waves via Feynman diagrams of the process $graviton + graviton to photon + photon$. Finally we review recent work on the vacuum production of counterpart electromagnetic radiation by gravitational waves.
This is a summary of presentations delivered at the OC1 parallel session Primordial Gravitational Waves and the CMB of the 12th Marcel Grossmann meeting in Paris, July 2009. The reports and discussions demonstrated significant progress that was achie ved in theory and observations. It appears that the existing data provide some indications of the presence of gravitational wave contribution to the CMB anisotropies, while ongoing and planned observational efforts are likely to convert these indications into more confident statements about the actual detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا