ﻻ يوجد ملخص باللغة العربية
Quantum materials with strong transport responses to disparate physical quantities are of great fundamental significance and may hold technological potentials. The interplay between interactions and topology drive such responses through the effects of spontaneous symmetry breaking and the associated domain configurations on quantum transport. Here we provide a comprehensive description of the magnetism of Mn3Ge, an antiferromagnetic kagomebased semimetal with room temperature transport anomalies associated with topologically protected Weyl nodes. Using polarized neutron diffraction, we show the all-important magnetic structure is anti-chiral and coplanar carrying the symmetry of a ferromagnet without appreciable magnetization. We probe and classify the long wavelength excitations that determine its macroscopic responses including a set of collective magneto-elastic modes. We develop a phenomenological spin Hamiltonian with exchange, Dzyaloshinskii-Moriya, and crystal field interactions to describe its collective magnetism. The itinerant character of the magnetism that drives quantum transport is apparent in spin wave damping and extended magnetic interactions. Our work provides the scientific basis for manipulation of the chiral antiferromagnetic texture of Mn3Ge to control its topological quantum transport.
By using polarized inelastic neutron scattering measurements, we show that the spin-lattice quantum entanglement in mutliferroics results in hybrid elementary excitations, involving spin and lattice degrees of freedom. These excitations can be consid
We present the topology of spin-split Fermi surface of CaAgAs as determined by de Haas-van Alphen (dHvA) effect measurements combined with ab initio calculations. We have determined the torus-shaped nodal-line Fermi surface from the dHvA oscillations
Using a phenomenological Ginzburg-Landau theory for the magnetic conical cycloid state of a multiferroic, which has been recently reported in the cubic spinel CoCr$_{2}$O$_{4}$, we discuss its low-energy fluctuation spectrum. We identify the Goldston
The electronic ground state of Ca3LiOsO6 was recently considered within an intermediate coupling regime that revealed J=3/2 spin-orbit entangled magnetic moments. Through inelastic neutron scattering and density functional theory we investigate the m
We report on TmMnO3 far infrared emissivity and reflectivity spectra from 1910 K to 4 K. At the highest temperature the number of infrared bands is lower than that predicted for centrosymmetric P63/mmc (D6h4) (Z=2) space group due high temperature an