ترغب بنشر مسار تعليمي؟ اضغط هنا

The Spectral and Magnetic Properties of Er$^{3+}$ and Yb$^{3+}$ Ions in Y$_{2}$Ti$_{2}$O$_{7}$ Crystals with a Pyrochlore Structure

90   0   0.0 ( 0 )
 نشر من قبل Vera Klekovkina V
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cubic Y$_{2}$Ti$_{2}$O$_{7}$ single crystals doped with Er$^{3+}$ and Yb$^{3+}$ ions have been studied by the methods of electron spin resonance (ESR) and selective laser spectroscopy. ESR spectra exhibit signals from rare-earth ions that substitute for yttrium ions in sites with local trigonal symmetry. The $g$ tensor components are determined. The results of optical investigations indicate that impurity centers of several types are formed; the sublevel energies of the ground and excited multiplets of these centers are found. Among the great variety of detected optical centers, the centers that dominate in the formation of ESR spectra are discriminated. An analysis of the experimental data using the exchange-charge model have made it possible to determine the sets of parameters of the crystal field for Er$^{3+}$ and Yb$^{3+}$ ions substituting Y$^{3+}$ ions in regular crystallographic sites in pyrochlore Y$_{2}$Ti$_{2}$O$_{7}$.



قيم البحث

اقرأ أيضاً

159 - Z. L. Dun , X. Li , R. S. Freitas 2015
Elastic neutron scattering, ac susceptibility, and specific heat experiments on the pyrochlores Er$_{2}$Ge$_{2}$O$_{7}$ and Yb$_{2}$Ge$_{2}$O$_{7}$ show that both systems are antiferromagnetically ordered in the $Gamma_5$ manifold. The ground state i s a $psi_{3}$ phase for the Er sample and a $psi_{2}$ or $psi_{3}$ phase for the Yb sample, which suggests Order by Disorder(ObD) physics. Furthermore, we unify the various magnetic ground states of all known R$_{2}$B$_{2}$O$_{7}$ (R = Er, Yb, B = Sn, Ti, Ge) compounds through the enlarged XY type exchange interaction $J_{pm}$ under chemical pressure. The mechanism for this evolution is discussed in terms of the phase diagram proposed in the theoretical study [Wong et al., Phys. Rev. B 88, 144402, (2013)].
The results of studies of Y$_{2}$Ti$_2$O$_7$ single crystals doped with Er$^{3+}$ and Yb$^{3+}$ ions by means of electron paramagnetic resonance (EPR) and dc-magnetometry are reported. EPR signals of the trigonal centers with the characteristic hyper fine structure of Er$^{3+}$ or Yb$^{3+}$ ions were observed. Field dependences of magnetization of single crystals for magnetic fields directed along the crystallographic axes and temperature dependences of magnetic susceptibilities were measured. Spin Hamiltonian parameters ($g$-factors and parameters of the hyperfine interaction) for Er$^{3+}$ and Yb$^{3+}$ ions were obtained from analysis of experimental data. The registered EPR spectra and magnetization curves were successfully reproduced by simulations in framework of the crystal-field approach, in particular, with an account for hybridization of ground 4f$^{13}$ configuration of Yb$^{3+}$ ions with the charge transfer states.
139 - O. P. Sushkov 2011
The present work addresses YBa$_{2}$Cu$_{3}$O$_{y}$ at doping below x=6% where the compound is a collinear antiferromagnet. In this region YBa$_{2}$Cu$_{3}$O$_{y}$ is a normal conductor with a finite resistivity at zero temperature. The value of the staggered magnetization at zero temperature is 0.6mu_B, the maximum value allowed by spin quantum fluctuations. The staggered magnetization is almost independent of doping. On the other hand, the Neel temperature decays very quickly from T_N=420K at x=0 to practically zero at x = 0.06. The present paper explains these remarkable properties and demonstrates that the properties result from the physics of a lightly doped Mott insulator with small hole pockets. Nuclear quadrupole resonance data are also discussed. The data shed light on mechanisms of stability of the antiferromagnetic order at x < 6%.
283 - Z. L. Dun , J. Trinh , M. Lee 2016
We present a systematic study of the structural and magnetic properties of two branches of the rare earth Tripod Kagome Lattice (TKL) family A$_{2}$RE$_{3}$Sb$_{3}$O$_{14}$ (A = Mg, Zn; RE = Pr, Nd, Gd, Tb, Dy, Ho, Er, Yb; here, we use abbreviation t extit{A-RE}, as in textit{MgPr} for Mg$_{2}$Pr$_{3}$Sb$_{3}$O$_{14}$), which complements our previously reported work on textit{MgDy}, textit{MgGd}, and textit{MgEr} cite{TKL}. The present susceptibility ($chi_{dc}$, $chi_{ac}$) and specific heat measurements reveal various magnetic ground states, including the non-magnetic singlet state for textit{MgPr}, textit{ZnPr}; long range orderings (LROs) for textit{MgGd}, textit{ZnGd}, textit{MgNd}, textit{ZnNd}, and textit{MgYb}; a long range magnetic charge ordered state for textit{MgDy}, textit{ZnDy}, and potentially for textit{MgHo}; possible spin glass states for textit{ZnEr}, textit{ZnHo}; the absence of spin ordering down to 80 mK for textit{MgEr}, textit{MgTb}, textit{ZnTb}, and textit{ZnYb} compounds. The ground states observed here bear both similarities as well as striking differences from the states found in the parent pyrochlore systems. In particular, while the TKLs display a greater tendency towards LRO, the lack of LRO in textit{MgHo}, textit{MgTb} and textit{ZnTb} can be viewed from the standpoint of a balance among spin-spin interactions, anisotropies and non-Kramers nature of single ion state. While substituting Zn for Mg changes the chemical pressure, and subtly modifies the interaction energies for compounds with larger RE ions, this substitution introduces structural disorder and modifies the ground states for compounds with smaller RE ions (Ho, Er, Yb).
Recent low temperature heat capacity (C$_P$) measurements on polycrystalline samples of the pyrochlore antiferromagnet Tb$_{2+x}$Ti$_{2-x}$O$_{7+delta}$ have shown a strong sensitivity to the precise Tb concentration $x$, with a large anomaly exhibit ed for $x sim 0.005$ at $T_C sim 0.5$ K and no such anomaly and corresponding phase transition for $x le 0$. We have grown single crystal samples of Tb$_{2+x}$Ti$_{2-x}$O$_{7+delta}$, with approximate composition $x=-0.001, +0.0042$, and $+0.0147$, where the $x=0.0042$ single crystal exhibits a large C$_P$ anomaly at $T_C$=0.45 K, but neither the $x=-0.001$ nor the $x=+0.0147$ single crystals display any such anomaly. We present new time-of-flight neutron scattering measurements on the $x=-0.001$ and the $x=+0.0147$ samples which show strong $left(frac{1}{2},frac{1}{2},frac{1}{2}right)$ quasi-Bragg peaks at low temperatures characteristic of short range antiferromagnetic spin ice (AFSI) order at zero magnetic field but only under field-cooled conditions, as was previously observed in our $x = 0.0042$ single crystal. These results show that the strong $left(frac{1}{2},frac{1}{2},frac{1}{2}right)$ quasi-Bragg peaks and gapped AFSI state at low temperatures under field cooled conditions are robust features of Tb$_2$Ti$_2$O$_7$, and are not correlated with the presence or absence of the C$_P$ anomaly and phase transition at low temperatures. Further, these results show that the ordered state giving rise to the C$_P$ anomaly is confined to $0 leq x leq 0.01$ for Tb$_{2+x}$Ti$_{2-x}$O$_{7+delta}$, and is not obviously connected with conventional order of magnetic dipole degrees of freedom.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا