ترغب بنشر مسار تعليمي؟ اضغط هنا

Dissecting the regions around IceCube high-energy neutrinos: growing evidence for the blazar connection

64   0   0.0 ( 0 )
 نشر من قبل Paolo Giommi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The association of two IceCube detections, the IceCube-170922A event and a neutrino flare, with the blazar TXS0506+056, has paved the way for the multimessenger quest for cosmic accelerators. IceCube has observed many other neutrinos but their origin remains unknown. To better understand the reason for the apparent lack of neutrino counterparts we have extended the comprehensive dissection of the sky area performed for the IceCube-170922A event to all the 70 public IceCube high-energy neutrinos that are well reconstructed and off the Galactic plane. Using the multi-frequency data available through the Open Universe platform, we have identified numerous candidate counterparts of IceCube events. We report here the classification of all the gamma-ray blazars found and the results of subsequent statistical tests. In addition, we have checked the 4LAC, 3FHL and 3HSP catalogues for potential counterparts. Following the dissection of all areas associated with IceCube neutrinos, we evaluate the data using a likelihood-ratio test and find a 3.23 sigma (post-trial) excess of HBLs and IBLs with a best-fit of 15 +/- 3.6 signal sources. This result, together with previous findings, consistently points to a growing evidence for a connection between IceCube neutrinos and blazars, the most energetic particle accelerators known in the Universe.

قيم البحث

اقرأ أيضاً

We report on results of an all-sky search for high-energy neutrino events interacting within the IceCube neutrino detector conducted between May 2010 and May 2012. The search follows up on the previous detection of two PeV neutrino events, with impro ved sensitivity and extended energy coverage down to approximately 30 TeV. Twenty-six additional events were observed, substantially more than expected from atmospheric backgrounds. Combined, both searches reject a purely atmospheric origin for the twenty-eight events at the $4sigma$ level. These twenty-eight events, which include the highest energy neutrinos ever observed, have flavors, directions, and energies inconsistent with those expected from the atmospheric muon and neutrino backgrounds. These properties are, however, consistent with generic predictions for an additional component of extraterrestrial origin.
145 - Giacomo DAmico 2017
We present a flavor and energy inference analysis for each high-energy neutrino event observed by the IceCube observatory during six years of data taking. Our goal is to obtain, for the first time, an estimate of the posterior probability distributio n for the most relevant properties, such as the neutrino energy and flavor, of the neutrino-nucleon interactions producing shower and track events in the IceCube detector. For each event the main observables in the IceCube detector are the deposited energy and the event topology (showers or tracks) produced by the Cherenkov light by the transit through a medium of charged particles created in neutrino interactions. It is crucial to reconstruct from these observables the properties of the neutrino which generated such event. Here we describe how to achieve this goal using Bayesian inference and Markov chain Monte Carlo methods.
We present the dissection in space, time, and energy of the region around the IceCube-170922A neutrino alert. This study is motivated by: (1) the first association between a neutrino alert and a blazar in a flaring state, TXS 0506+056; (2) the eviden ce of a neutrino flaring activity during 2014 - 2015 from the same direction; (3) the lack of an accompanying simultaneous $gamma$-ray enhancement from the same counterpart; (4) the contrasting flaring activity of a neighbouring bright $gamma$-ray source, the blazar PKS 0502+049, during 2014 - 2015. Our study makes use of multi-wavelength archival data accessed through Open Universe tools and includes a new analysis of Fermi-LAT data. We find that PKS 0502+049 contaminates the $gamma$-ray emission region at low energies but TXS 0506+056 dominates the sky above a few GeV. TXS 0506+056, which is a very strong (top percent) radio and $gamma$-ray source, is in a high $gamma$-ray state during the neutrino alert but in a low though hard $gamma$-ray state in coincidence with the neutrino flare. Both states can be reconciled with the energy associated with the neutrino emission and, in particular during the low/hard state, there is evidence that TXS 0506+056 has undergone a hadronic flare with very important implications for blazar modelling. All multi-messenger diagnostics reported here support a single coherent picture in which TXS 0506+056, a very high energy $gamma$-ray blazar, is the only counterpart of all the neutrino emissions in the region and therefore the most plausible first non-stellar neutrino and, hence, cosmic ray source.
A full energy and flavor-dependent analysis of the three-year high-energy IceCube neutrino events is presented. By means of multidimensional fits, we derive the current preferred values of the high-energy neutrino flavor ratios, the normalization and spectral index of the astrophysical fluxes, and the expected atmospheric background events, including a prompt component. A crucial assumption resides on the choice of the energy interval used for the analyses, which significantly biases the results. When restricting ourselves to the ~30 TeV - 3 PeV energy range, which contains all the observed IceCube events, we find that the inclusion of the spectral information improves the fit to the canonical flavor composition at Earth, (1:1:1), with respect to a single-energy bin analysis. Increasing both the minimum and the maximum deposited energies has dramatic effects on the reconstructed flavor ratios as well as on the spectral index. Imposing a higher threshold of 60 TeV yields a slightly harder spectrum by allowing a larger muon neutrino component, since above this energy most atmospheric tracklike events are effectively removed. Extending the high-energy cutoff to fully cover the Glashow resonance region leads to a softer spectrum and a preference for tau neutrino dominance, as none of the expected electron antineutrino induced showers have been observed so far. The lack of showers at energies above 2 PeV may point to a broken power-law neutrino spectrum. Future data may confirm or falsify whether or not the recently discovered high-energy neutrino fluxes and the long-standing detected cosmic rays have a common origin.
We present an in-depth analysis of the flavour and spectral composition of the 36 high-energy neutrino events observed after three years of observation by the IceCube neutrino telescope. While known astrophysical sources of HE neutrinos are expected to produce a nearly $(1:1:1)$ flavour ratio (electron : muon : tau) of neutrinos at earth, we show that the best fits based on the events detected above $E_ u ge 28$ TeV do not necessarily support this hypothesis. Crucially, the energy range that is considered when analysing the HE neutrino data can have a profound impact on the conclusions. We highlight two intriguing puzzles: an apparent deficit of muon neutrinos, seen via a deficit of track-like events; and an absence of $bar u_e$s at high energy, seen as an absence of events near the Glashow resonance. We discuss possible explanations, including the misidentification of tracks as showers, and a broken power law, in analogy to the observed HE cosmic ray spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا