ترغب بنشر مسار تعليمي؟ اضغط هنا

A hot terrestrial planet orbiting the bright M dwarf L 168-9 unveiled by TESS

109   0   0.0 ( 0 )
 نشر من قبل Nicola Astudillo-Defru
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of a transiting super-Earth-sized planet (R=1.39+-0.09 Rearth) in a 1.4-day orbit around L 168-9 (TOI-134),a bright M1V dwarf (V=11, K=7.1) located at 25.15+-0.02 pc. The host star was observed in the first sector of the Transiting Exoplanet Survey Satellite (TESS) mission and, for confirmation and planet mass measurement, was followed up with ground-based photometry, seeing-limited and high-resolution imaging, and precise radial velocity (PRV) observations using the HARPS and PFS spectrographs. Combining the TESS data and PRV observations, we find the mass of L168-9 b to be 4.60+-0.56 Mearth, and thus the bulk density to be 1.74+0.44-0.33 times larger than that of the Earth. The orbital eccentricity is smaller than 0.21 (95% confidence). This planet is a Level One Candidate for the TESS Missions scientific objective - to measure the masses of 50 small planets - and is one of the most observationally accessible terrestrial planets for future atmospheric characterization.



قيم البحث

اقرأ أيضاً

219 - Kristo Ment 2018
LHS 1140 is a nearby mid-M dwarf known to host a temperate rocky super-Earth (LHS 1140 b) on a 24.737-day orbit. Based on photometric observations by MEarth and Spitzer as well as Doppler spectroscopy from HARPS, we report the discovery of an additio nal transiting rocky companion (LHS 1140 c) with a mass of $1.81pm0.39~{rm M_{Earth}}$ and a radius of $1.282pm0.024~{rm R_{Earth}}$ on a tighter, 3.77795-day orbit. We also obtain more precise estimates of the mass and radius of LHS 1140 b to be $6.98pm0.89~{rm M_{Earth}}$ and $1.727pm0.032~{rm R_{Earth}}$. The mean densities of planets b and c are $7.5pm1.0~rm{g/cm^3}$ and $4.7pm1.1~rm{g/cm^3}$, respectively, both consistent with the Earths ratio of iron to magnesium silicate. The orbital eccentricities of LHS 1140 b and c are consistent with circular orbits and constrained to be below 0.06 and 0.31, respectively, with 90% confidence. Because the orbits of the two planets are co-planar and because we know from previous analyses of Kepler data that compact systems of small planets orbiting M dwarfs are commonplace, a search for more transiting planets in the LHS 1140 system could be fruitful. LHS 1140 c is one of the few known nearby terrestrial planets whose atmosphere could be studied with the upcoming James Webb Space Telescope.
We present the discovery of TOI-197.01, the first transiting planet identified by the Transiting Exoplanet Survey Satellite (TESS) for which asteroseismology of the host star is possible. TOI-197 (HIP116158) is a bright (V=8.2 mag), spectroscopically classified subgiant which oscillates with an average frequency of about 430 muHz and displays a clear signature of mixed modes. The oscillation amplitude confirms that the redder TESS bandpass compared to Kepler has a small effect on the oscillations, supporting the expected yield of thousands of solar-like oscillators with TESS 2-minute cadence observations. Asteroseismic modeling yields a robust determination of the host star radius (2.943+/-0.064 Rsun), mass (1.212 +/- 0.074 Msun) and age (4.9+/-1.1 Gyr), and demonstrates that it has just started ascending the red-giant branch. Combining asteroseismology with transit modeling and radial-velocity observations, we show that the planet is a hot Saturn (9.17+/-0.33 Rearth) with an orbital period of ~14.3 days, irradiance of 343+/-24 Fearth, moderate mass (60.5 +/- 5.7 Mearth) and density (0.431+/-0.062 gcc). The properties of TOI-197.01 show that the host-star metallicity - planet mass correlation found in sub-Saturns (4-8 Rearth) does not extend to larger radii, indicating that planets in the transition between sub-Saturns and Jupiters follow a relatively narrow range of densities. With a density measured to ~15%, TOI-197.01 is one of the best characterized Saturn-sized planets to date, augmenting the small number of known transiting planets around evolved stars and demonstrating the power of TESS to characterize exoplanets and their host stars using asteroseismology.
We report the Transiting Exoplanet Survey Satellite (TESS) discovery of three terrestrial-sized planets transiting L 98-59 (TOI-175, TIC 307210830) -- a bright M dwarf at a distance of 10.6 pc. Using the Gaia-measured distance and broad-band photomet ry we find that the host star is an M3 dwarf. Combined with the TESS transits from three sectors, the corresponding stellar parameters yield planet radii ranging from 0.8REarth to 1.6REarth. All three planets have short orbital periods, ranging from 2.25 to 7.45 days with the outer pair just wide of a 2:1 period resonance. Diagnostic tests produced by the TESS Data Validation Report and the vetting package DAVE rule out common false positive sources. These analyses, along with dedicated follow-up and the multiplicity of the system, lend confidence that the observed signals are caused by planets transiting L 98-59 and are not associated with other sources in the field. The L 98-59 system is interesting for a number of reasons: the host star is bright (V = 11.7 mag, K = 7.1 mag) and the planets are prime targets for further follow-up observations including precision radial-velocity mass measurements and future transit spectroscopy with the James Webb Space Telescope; the near resonant configuration makes the system a laboratory to study planetary system dynamical evolution; and three planets of relatively similar size in the same system present an opportunity to study terrestrial planets where other variables (age, metallicity, etc.) can be held constant. L 98-59 will be observed in 4 more TESS sectors, which will provide a wealth of information on the three currently known planets and have the potential to reveal additional planets in the system.
We present the discovery and characterization of five hot and warm Jupiters -- TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b (TIC 139375960) -- bas ed on data from NASAs Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the $TESS$ Follow-up Observing Program (TFOP) Working Group. The planets are all Jovian size (R$_{rm P}$ = 1.01-1.77 R$_{rm J}$) and have masses that range from 0.85 to 6.33 M$_{rm J}$. The host stars of these systems have F and G spectral types (5595 $le$ T$_{rm eff}$ $le$ 6460 K) and are all relatively bright (9 $<V<$ 10.8, 8.2 $<K<$ 9.3) making them well-suited for future detailed characterization efforts. Three of the systems in our sample (TOI-640 b, TOI-1333 b, and TOI-1601 b) orbit subgiant host stars (log g$_*$ $<$4.1). TOI-640 b is one of only three known hot Jupiters to have a highly inflated radius (R$_{rm P}$ > 1.7R$_{rm J}$, possibly a result of its host stars evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive hot Jupiter discovered to date by $TESS$ with a measured mass of $6.31^{+0.28}_{-0.30}$ M$_{rm J}$ and a statistically significant, non-zero orbital eccentricity of e = $0.074^{+0.021}_{-0.022}$. This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-Solar analogue. NASAs $TESS$ mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals.
128 - P. Bluhm , R. Luque , N. Espinoza 2020
We report the confirmation of a transiting planet around the bright, inactive M0.5 V star TOI-1235 (TYC 4384-1735-1, V = 11.5 mag), whose transit signal was detected in the photometric time series of Sectors 14, 20, and 21 of the TESS space mission. We confirm the planetary nature of the transit signal, which has a period of 3.44 d, by using precise radial velocity measurements with CARMENES and HARPS-N spectrographs. A comparison of the properties derived for TOI-1235 bs with theoretical models reveals that the planet has a rocky composition, with a bulk density slightly higher than Earths. In particular, we measure a mass of M_p = 5.9+/-0.6 M_Earth and a radius of R_p = 1.69+/-0.08 R_Earth, which together result in a density of rho_p = 6.7+1.3-1.1 g/cm3. When compared with other well-characterized exoplanetary systems, the particular combination of planetary radius and mass puts our discovery in the radius gap, a transition region between rocky planets and planets with significant atmospheric envelopes, with few known members. While the exact location of the radius gap for M dwarfs is still a matter of debate, our results constrain it to be located at around 1.7 R_Earth or larger at the insolation levels received by TOI-1235 b (~60 S_Earth), which makes it an extremely interesting object for further studies of planet formation and atmospheric evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا