ترغب بنشر مسار تعليمي؟ اضغط هنا

A Cloud Security Framework Based on Trust Model and Mobile Agent

121   0   0.0 ( 0 )
 نشر من قبل Mahieddine Djoudi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cloud computing as a potential paradigm offers tremendous advantages to enterprises. With the cloud computing, the markets entrance time is reduced, computing capabilities is augmented and computing power is really limitless. Usually, to use the full power of cloud computing, cloud users has to rely on external cloud service provider for managing their data. Nevertheless, the management of data and services are probably not fully trustworthy. Hence, data owners are uncomfortable to place their sensitive data outside their own system .i.e., in the cloud. Bringing transparency, trustworthiness and security in the cloud model, in order to fulfill clients requirements are still ongoing. To achieve this goal, our paper introduces two levels security framework: Cloud Service Provider (CSP) and Cloud Service User (CSU). Each level is responsible for a particular task of the security. The CSU level includes a proxy agent and a trust agent, dealing with the first verification. Then a second verification is performed at the CSP level. The framework incorporates a trust model to monitor users behaviors. The use of mobile agents will exploit their intrinsic features such as mobility, deliberate localization and secure communication channel provision. This model aims to protect users sensitive information from other internal or external users and hackers. Moreover, it can detect policy breaches, where the users are notified in order to take necessary actions when malicious access or malicious activity would occur.



قيم البحث

اقرأ أيضاً

76 - Ahmed E. Youssef 2020
Security is considered one of the top ranked risks of Cloud Computing (CC) due to the outsourcing of sensitive data onto a third party. In addition, the complexity of the cloud model results in a large number of heterogeneous security controls that m ust be consistently managed. Hence, no matter how strongly the cloud model is secured, organizations continue suffering from lack of trust on CC and remain uncertain about its security risk consequences. Traditional risk management frameworks do not consider the impact of CC security risks on the business objectives of the organizations. In this paper, we propose a novel Cloud Security Risk Management Framework (CSRMF) that helps organizations adopting CC identify, analyze, evaluate, and mitigate security risks in their Cloud platforms. Unlike traditional risk management frameworks, CSRMF is driven by the business objectives of the organizations. It allows any organization adopting CC to be aware of cloud security risks and align their low-level management decisions according to high-level business objectives. In essence, it is designed to address impacts of cloud-specific security risks into business objectives in a given organization. Consequently, organizations are able to conduct a cost-value analysis regarding the adoption of CC technology and gain an adequate level of confidence in Cloud technology. On the other hand, Cloud Service Providers (CSP) are able to improve productivity and profitability by managing cloud-related risks. The proposed framework has been validated and evaluated through a use-case scenario.
The roles of trust, security and privacy are somewhat interconnected, but different facets of next generation networks. The challenges in creating a trustworthy 6G are multidisciplinary spanning technology, regulation, techno-economics, politics and ethics. This white paper addresses their fundamental research challenges in three key areas. Trust: Under the current open internet regulation, the telco cloud can be used for trust services only equally for all users. 6G network must support embedded trust for increased level of information security in 6G. Trust modeling, trust policies and trust mechanisms need to be defined. 6G interlinks physical and digital worlds making safety dependent on information security. Therefore, we need trustworthy 6G. Security: In 6G era, the dependence of the economy and societies on IT and the networks will deepen. The role of IT and the networks in national security keeps rising - a continuation of what we see in 5G. The development towards cloud and edge native infrastructures is expected to continue in 6G networks, and we need holistic 6G network security architecture planning. Security automation opens new questions: machine learning can be used to make safer systems, but also more dangerous attacks. Physical layer security techniques can also represent efficient solutions for securing less investigated network segments as first line of defense. Privacy: There is currently no way to unambiguously determine when linked, deidentified datasets cross the threshold to become personally identifiable. Courts in different parts of the world are making decisions about whether privacy is being infringed, while companies are seeking new ways to exploit private data to create new business revenues. As solution alternatives, we may consider blockchain, distributed ledger technologies and differential privacy approaches.
246 - Wei Zhou , Yan Jia , Yao Yao 2018
A smart home connects tens of home devices to the Internet, where an IoT cloud runs various home automation applications. While bringing unprecedented convenience and accessibility, it also introduces various security hazards to users. Prior research studied smart home security from several aspects. However, we found that the complexity of the interactions among the participating entities (i.e., devices, IoT clouds, and mobile apps) has not yet been systematically investigated. In this work, we conducted an in-depth analysis of five widely-used smart home platforms. Combining firmware analysis, network traffic interception, and blackbox testing, we reverse-engineered the details of the interactions among the participating entities. Based on the details, we inferred three legitimate state transition diagrams for the three entities, respectively. Using these state machines as a reference model, we identified a set of unexpected state transitions. To confirm and trigger the unexpected state transitions, we implemented a set of phantom devices to mimic a real device. By instructing the phantom devices to intervene in the normal entity-entity interactions, we have discovered several new vulnerabilities and a spectrum of attacks against real-world smart home platforms.
There has been tremendous interest in the development of formal trust models and metrics through the use of analytics (e.g., Belief Theory and Bayesian models), logics (e.g., Epistemic and Subjective Logic) and other mathematical models. The choice o f trust metric will depend on context, circumstance and user requirements and there is no single best metric for use in all circumstances. Where different users require different trust metrics to be employed the trust score calculations should still be based on all available trust evidence. Trust is normally computed using past experiences but, in practice (especially in centralised systems), the validity and accuracy of these experiences are taken for granted. In this paper, we provide a formal framework and practical blockchain-based implementation that allows independent trust providers to implement different trust metrics in a distributed manner while still allowing all trust providers to base their calculations on a common set of trust evidence. Further, our design allows experiences to be provably linked to interactions without the need for a central authority. This leads to the notion of evidence-based trust with provable interactions. Leveraging blockchain allows the trust providers to offer their services in a competitive manner, charging fees while users are provided with payments for recording experiences. Performance details of the blockchain implementation are provided.
Sixth-generation (6G) mobile networks will have to cope with diverse threats on a space-air-ground integrated network environment, novel technologies, and an accessible user information explosion. However, for now, security and privacy issues for 6G remain largely in concept. This survey provides a systematic overview of security and privacy issues based on prospective technologies for 6G in the physical, connection, and service layers, as well as through lessons learned from the failures of existing security architectures and state-of-the-art defenses. Two key lessons learned are as follows. First, other than inheriting vulnerabilities from the previous generations, 6G has new threat vectors from new radio technologies, such as the exposed location of radio stripes in ultra-massive MIMO systems at Terahertz bands and attacks against pervasive intelligence. Second, physical layer protection, deep network slicing, quantum-safe communications, artificial intelligence (AI) security, platform-agnostic security, real-time adaptive security, and novel data protection mechanisms such as distributed ledgers and differential privacy are the top promising techniques to mitigate the attack magnitude and personal data breaches substantially.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا