ﻻ يوجد ملخص باللغة العربية
A Quantum Key Distribution (QKD) protocol describes how two remote parties can establish a secret key by communicating over a quantum and a public classical channel that both can be accessed by an eavesdropper. QKD protocols using energy-time entangled photon pairs are of growing practical interest because of their potential to provide a higher secure key rate over long distances by carrying multiple bits per entangled photon pair. We consider a system where information can be extracted by measuring random times of a sequence of entangled photon arrivals. Our goal is to maximize the utility of each such pair. We propose a discrete time model for the photon arrival process, and establish a theoretical bound on the number of raw bits that can be generated under this model. We first analyse a well known simple binning encoding scheme, and show that it generates significantly lower information rate than what is theoretically possible. We then propose three adaptive schemes that increase the number of raw bits generated per photon, and compute and compare the information rates they offer. Moreover, the effect of public channel communication on the secret key rates of the proposed schemes is investigated.
Graph based codes such as low density parity check (LDPC) codes have been shown promising for the information reconciliation phase in quantum key distribution (QKD). However, existing graph coding schemes have not fully utilized the properties of the
Quantum key distribution (QKD) is one of the most important subjects in quantum information theory. There are two kinds of QKD protocols, prepare-measure protocols and entanglement-based protocols. For long-distance communications in noisy environmen
A quantum key distribution protocol based on time coding uses delayed one photon pulses with minimum time-frequency uncertainty product. Possible overlap between the pulses induces an ambiguous delay measurement and ensures a secure key exchange.
We propose a multiple-input multiple-output (MIMO) quantum key distribution (QKD) scheme for terahertz (THz) frequency applications operating at room temperature. Motivated by classical MIMO communications, a transmit-receive beamforming scheme is pr
Continuous-variable quantum key distribution (CV-QKD) with discrete modulation has received widespread attentions because of its experimental simplicity, lower-cost implementation and ease to multiplex with classical optical communication. Recently,