ﻻ يوجد ملخص باللغة العربية
We perform a systematic {it ab initio} study of the work function and its uniform strain dependence for graphene and silicene for both tensile and compressive strains. The Poisson ratios associated with armchair and zigzag strains are also computed. Based on these results, we obtain the deformation potential, crucial for straintronics, as a function of the applied strain. Further, we propose a particular experimental setup with a special strain configuration that generates only the electric field, while the pseudomagnetic field is absent. Then, applying a real magnetic field, one should be able to realize experimentally the spectacular phenomenon of the collapse of Landau levels in graphene or related two-dimensional materials.
The quantum Hall effect in curved space has been the subject of many theoretical investigations in the past, but devising a physical system to observe this effect is hard. Many works have indicated that electronic excitations in strained graphene rea
We describe the formation of superconducting states in graphene in the presence of pseudo-Landau levels induced by strain, when time reversal symmetry is preserved. We show that superconductivity in strained graphene is quantum critical when the pseu
We propose a hexagonal optical lattice system with spatial variations in the hopping matrix elements. Just like in the valley Hall effect in strained Graphene, for atoms near the Dirac points the variations in the hopping matrix elements can be descr
Motivated by theory and experiments on strain induced pseudo-Landau levels (LLs) of Dirac fermions in graphene and topological materials, we consider its extension for Bogoliubov quasiparticles (QPs) in a nodal superconductor (SC). We show, using an
We study multielectron bubble phases in the $N=2$ and $N=3$ Landau levels in a high mobility GaAs/AlGaAs sample. We found that the longitudinal magnetoresistance versus temperature curves in the multielectron bubble region exhibit sharp peaks, irresp