ﻻ يوجد ملخص باللغة العربية
Houdebine et al (2017: H17) combined CaII data with projected rotational velocities (v sin i) to construct rotation-activity correlations (RAC) in K-M dwarfs. The RAC slopes were used to argue that a transition between dynamo modes occurs at a spectral type between M2 and M3. H17 suggested that the dynamo transition corresponds to a transition to complete convection (TTCC). An independent study of GAIA data led Jao et al (2018) to suggest that the TTCC sets in near M3.0V, close to the H17 result. However, the changes in a star which cause TTCC signatures in GAIA data might not lead to changes in CaII emission at an identical spectral type: the latter are also affected by magnetic effects which depend on certain properties of convection in the core. Here, we use CaII emission fluxes in a sample of ~600 M dwarfs, and attempt to narrow down the transition from one dynamo mode to another: rather than relying on RAC slopes, we quantify how the CaII emission flux varies with spectral type to identify steps where the flux decreases significantly across a narrow range of spectral types. We suggest that the dynamo mode transition may be narrowed down to between M2.1 and M2.3. This is close to, but earlier than, the TTCC location identified by Jao et al (2018). We suggest that the transition in dynamo mode may be related to the existence of a small convective core which occurs for a finite time interval in certain low mass stars.
Recent progress in observational studies of magnetic activity in M dwarfs urgently requires support from ideas of stellar dynamo theory. We propose a strategy to connect observational and theoretical studies. In particular, we suggest four magnetic c
We seek to understand the transition from nearly axisymmetric configurations at solar rotation rates to nonaxisymmetric configurations for rapid rotation using 3D numerical simulations of turbulent convection and considering rotation rates between 1
We re-examine the recent suggestion of a high fraction of transition discs (i.e. those with a cleared inner hole) in M stars, motivated by the fact that we expect that, for M stars, even discs without inner holes should exhibit very weak excess short
Fuzzy dark matter (FDM) is an attractive dark matter candidate motivated by small scale problems in astrophysics and with a rich phenomenology on those scales. We scrutinize the FDM model, more specifically the mass of the FDM particle, through a dyn
Using the magnetohydrodynamic (MHD) description, we develop a nonlinear dynamo model that couples the evolution of the large scale magnetic field with turbulent dynamics of the plasma at small scale by electromotive force (e.m.f.) in the induction eq