ﻻ يوجد ملخص باللغة العربية
Short gamma-ray bursts (SGRBs) are now known to be the product of the merger of two compact objects. However, two possible formation channels exist: neutron star -- neutron star (NS -- NS) or NS -- black hole (BH). The landmark SGRB 170817A provided evidence for the NS -- NS channel, thanks to analysis of its gravitational wave signal. We investigate the complete population of SGRBs with an associated redshift (39 events), and search for any divisions that may indicate that a NS -- BH formation channel also contributes. Though no conclusive dichotomy is found, we find several lines of evidence that tentatively support the hypothesis that SGRBs with extended emission (EE; 7 events) constitute the missing merger population: they are unique in the large energy band-sensitivity of their durations, and have statistically distinct energies and host galaxy offsets when compared to regular (non-EE) SGRBs. If this is borne out via future gravitational wave detections it will conclusively disprove the magnetar model for SGRBs. Furthermore, we identify the first statistically significant anti-correlation between the offsets of SGRBs from their host galaxies and their prompt emission energies.
The central engine of short gamma-ray bursts (sGRBs) is hidden from direct view, operating at a scale much smaller than that probed by the emitted radiation. Thus we must infer its origin not only with respect to the formation of the {it trigger} - t
Short duration Gamma-Ray Bursts are thought to originate from the coalescence of neutron stars in binary systems. They are detected as a brief ($<$ 2s), intense flash of gamma-ray radiation followed by a weaker, rapidly decreasing afterglow. They are
The most popular model for short gamma-ray bursts (sGRBs) involves the coalescence of binary neutron stars. Because the progenitor is actually hidden from view, we must consider under which circumstances such merging systems are capable of producing
Synoptic searches for the optical counterpart to a binary neutron star (BNS) or neutron star-black hole (NSBH) merger can pose significant challenges towards the discovery of kilonovae and performing multi-messenger science. In this work, we describe
Coalescing neutron star (NS)-black hole (BH) binaries are promising sources of gravitational-waves (GWs) to be detected within the next few years by current GW observatories. If the NS is tidally disrupted outside the BH innermost stable circular orb