ﻻ يوجد ملخص باللغة العربية
The fundamental difficulty in person re-identification (ReID) lies in learning the correspondence among individual cameras. It strongly demands costly inter-camera annotations, yet the trained models are not guaranteed to transfer well to previously unseen cameras. These problems significantly limit the application of ReID. This paper rethinks the working mechanism of conventional ReID approaches and puts forward a new solution. With an effective operator named Camera-based Batch Normalization (CBN), we force the image data of all cameras to fall onto the same subspace, so that the distribution gap between any camera pair is largely shrunk. This alignment brings two benefits. First, the trained model enjoys better abilities to generalize across scenarios with unseen cameras as well as transfer across multiple training sets. Second, we can rely on intra-camera annotations, which have been undervalued before due to the lack of cross-camera information, to achieve competitive ReID performance. Experiments on a wide range of ReID tasks demonstrate the effectiveness of our approach. The code is available at https://github.com/automan000/Camera-based-Person-ReID.
Existing person re-identification (re-id) methods mostly exploit a large set of cross-camera identity labelled training data. This requires a tedious data collection and annotation process, leading to poor scalability in practical re-id applications.
Unsupervised person re-identification (re-ID) remains a challenging task. While extensive research has focused on the framework design or loss function, we show in this paper that sampling strategy plays an equally important role. We analyze the reas
Person re-identification (ReID) aims at finding the same person in different cameras. Training such systems usually requires a large amount of cross-camera pedestrians to be annotated from surveillance videos, which is labor-consuming especially when
Although existing person re-identification (Re-ID) methods have shown impressive accuracy, most of them usually suffer from poor generalization on unseen target domain. Thus, generalizable person Re-ID has recently drawn increasing attention, which t
Intra-camera supervision (ICS) for person re-identification (Re-ID) assumes that identity labels are independently annotated within each camera view and no inter-camera identity association is labeled. It is a new setting proposed recently to reduce