ﻻ يوجد ملخص باللغة العربية
Two method for computation of the spectra of certain infinite graphs are suggested. The first one can be viewed as a reversed Gram--Schmidt orthogonalization procedure. It relies heavily on the spectral theory of Jacobi matrices. The second method is related to the Schur complement for block matrices. A number of examples including infinite graphs with tails, chains of cycles and ladders are worked out in detail.
Given two graphs, a backbone and a finger, a comb product is a new graph obtained by grafting a copy of the finger into each vertex of the backbone. We study the comb graphs in the case when both components are the paths of order $n$ and $k$, respect
We study the symmetry properties of the spectra of normalized Laplacians on signed graphs. We find a new machinery that generates symmetric spectra for signed graphs, which includes bipartiteness of unsigned graphs as a special case. Moreover, we pro
In his survey Beyond graph energy: Norms of graphs and matrices (2016), Nikiforov proposed two problems concerning characterizing the graphs that attain equality in a lower bound and in a upper bound for the energy of a graph, respectively. We show t
In this paper, using matrix techniques, we compute the Ihara-zeta function and the number of spanning trees of the join of two semi-regular bipartite graphs. Furthermore, we show that the spectrum and the zeta function of the join of two semi-regular bipartite graphs can determine each other.
A caterpillar graph $T(p_1, ldots, p_r)$ of order $n= r+sum_{i=1}^r p_i$, $rgeq 2$, is a tree such that removing all its pendent vertices gives rise to a path of order $r$. In this paper we establish a necessary and sufficient condition for a real nu