ترغب بنشر مسار تعليمي؟ اضغط هنا

Initial estimates for certain subclasses of bi-univalent functions with $kappa-$Fibonacci numbers

202   0   0.0 ( 0 )
 نشر من قبل Nanjundan Magesh
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we consider certain class of bi-univalent functions related with shell-like curves related to $kappa-$Fibonacci numbers. Further, we obtain the estimates of initial Taylor-Maclaurin coefficients (second and third coefficients) and Fekete - Szeg{o} inequalities. Also we discuss the special cases of the obtained results.



قيم البحث

اقرأ أيضاً

Recently, in their pioneering work on the subject of bi-univalent functions, Srivastava et al. cite{HMS-AKM-PG} actually revived the study of the coefficient problems involving bi-univalent functions. Inspired by the pioneering work of Srivastava et al. cite{HMS-AKM-PG}, there has been triggering interest to study the coefficient problems for the different subclasses of bi-univalent functions. Motivated largely by Ali et al. cite{Ali-Ravi-Ma-Mina-class}, Srivastava et al. cite{HMS-AKM-PG} and G{u}ney et al. cite{HOG-GMS-JS-Fib-2018} in this paper, we consider certain classes of bi-univalent functions related to shell-like curves connected with Fibonacci numbers to obtain the estimates of second, third Taylor-Maclaurin coefficients and Fekete - Szeg{o} inequalities. Further, certain special cases are also indicated. Some interesting remarks of the results presented here are also discussed.
376 - H. Orhan , N. Magesh , V.K.Balaji 2013
In this paper we extend the concept of bi-univalent to the class of meromorphic functions. We propose to investigate the coefficient estimates for two classes of meromorphic bi-univalent functions. Also, we find estimates on the coefficients |b0| and |b1| for functions in these new classes. Some interesting remarks and applications of the results presented here are also discussed.
541 - H. Orhan , N. Magesh , J. Yamini 2015
In the present work, we propose to investigate the second Hankel determinant inequalities for certain class of analytic and bi-univalent functions. Some interesting applications of the results presented here are also discussed.
In the present work, we propose to investigate the Fekete-Szego inequalities certain classes of analytic and bi-univalent functions defined by subordination. The results in the bounds of the third coefficient which improve many known results concerni ng different classes of bi-univalent functions. Some interesting applications of the results presented here are also discussed.
541 - H. Orhan , N. Magesh , V.K.Balaji 2013
Inspired by the recent works of Srivastava et al. (HMS-AKM-PG), Frasin and Aouf (BAF-MKA) and others (Ali-Ravi-Ma-Mina-class,Caglar-Orhan,Goyal-Goswami,Xu-HMS-AML,Xu-HMS-AMC), we propose to investigate the coefficient estimates for a general class of analytic and bi-univalent functions. Also, we obtain estimates on the coefficients |a2| and |a3| for functions in this new class. Some interesting remarks, corollaries and applications of the results presented here are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا