ﻻ يوجد ملخص باللغة العربية
This article reviews the theoretical constraints on the scalar potential of a general extension of the Standard Model that encompasses a $SU(3)_ctimes SU(3)_Ltimes U(1)_X$ gauge symmetry. In this respect, the boundedness-from-below is analysed to identify the correct criteria for obtaining the physical minima of the Higgs parameter space. Furthermore, perturbativity and unitarity bounds are discussed in light of the exact diagonalisation of the scalar fields. This study represents a framework for fast numerical checks on specific $331$ Model benchmarks that are relevant for future collider searches.
We discuss the main features of the scalar sector of a class of BSM models with enlarged gauge symmetry, the so called 331 Models. The theoretical constraints on the scalar potential such as unitarity, perturbativity and boundedness-from-below, are p
We investigate coherent-elastic neutrino-nucleus scattering ($CE u NS$) in 3-3-1 models for different values of $beta$ in which $beta$ is a parameter used to define the charge operator of the 331 models. We show that the number of events predicted by
We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows to describe the effective potential as a function of both scalar field amplitude and
We investigate the general group structure of gauge-Higgs unified models. We find that a given embedding of the sm gauge group will imply the presence of additional light vectors, except for a small set of special cases, which we determine; the argum
We perform a detailed analysis of flavour changing neutral current processes in the charm sector in the context of 331 models. As pointed out recently, in the case of $Z^prime$ contributions in these models there are no new free parameters beyond tho