ترغب بنشر مسار تعليمي؟ اضغط هنا

Internet congestion control: from stochastic to dynamical models

258   0   0.0 ( 0 )
 نشر من قبل Jos\\'e Amig\\'o
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since its inception, control of data congestion on the Internet has been based on stochastic models. One of the first such models was Random Early Detection. Later, this model was reformulated as a dynamical system, with the average queue sizes at a routers buffer being the states. Recently, the dynamical model has been generalized to improve global stability. In this paper we review the original stochastic model and both nonlinear models of Random Early Detection with a two-fold objective: (i) illustrate how a random model can be smoothed out to a deterministic one through data aggregation, and (ii) how this translation can shed light into complex processes such as the Internet data traffic. Furthermore, this paper contains new materials concerning the occurrence of chaos, bifurcation diagrams, Lyapunov exponents and global stability robustness with respect to control parameters. The results reviewed and reported here are expected to help design an active queue management algorithm in real conditions, that is, when system parameters such as the number of users and the round-trip time of the data packets change over time. The topic also illustrates the much-needed synergy of a theoretical approach, practical intuition and numerical simulations in engineering.



قيم البحث

اقرأ أيضاً

We describe a computational method for constructing a coarse combinatorial model of some dynamical system in which the macroscopic states are given by elementary cycling motions of the system. Our method is in particular applicable to time series dat a. We illustrate the construction by a perturbed double well Hamiltonian as well as the Lorenz system.
We propose to compute approximations to general invariant sets in dynamical systems by minimizing the distance between an appropriately selected finite set of points and its image under the dynamics. We demonstrate, through computational experiments that this approach can successfully converge to approximations of (maximal) invariant sets of arbitrary topology, dimension and stability as, e.g., saddle type invariant sets with complicated dynamics. We further propose to extend this approach by adding a Lennard-Jones type potential term to the objective function which yields more evenly distributed approximating finite point sets and perform corresponding numerical experiments.
In this note we prove that a fractional stochastic delay differential equation which satisfies natural regularity conditions generates a continuous random dynamical system on a subspace of a Holder space which is separable.
Agent-based models provide a flexible framework that is frequently used for modelling many biological systems, including cell migration, molecular dynamics, ecology, and epidemiology. Analysis of the model dynamics can be challenging due to their inh erent stochasticity and heavy computational requirements. Common approaches to the analysis of agent-based models include extensive Monte Carlo simulation of the model or the derivation of coarse-grained differential equation models to predict the expected or averaged output from the agent-based model. Both of these approaches have limitations, however, as extensive computation of complex agent-based models may be infeasible, and coarse-grained differential equation models can fail to accurately describe model dynamics in certain parameter regimes. We propose that methods from the equation learning field provide a promising, novel, and unifying approach for agent-based model analysis. Equation learning is a recent field of research from data science that aims to infer differential equation models directly from data. We use this tutorial to review how methods from equation learning can be used to learn differential equation models from agent-based model simulations. We demonstrate that this framework is easy to use, requires few model simulations, and accurately predicts model dynamics in parameter regions where coarse-grained differential equation models fail to do so. We highlight these advantages through several case studies involving two agent-based models that are broadly applicable to biological phenomena: a birth-death-migration model commonly used to explore cell biology experiments and a susceptible-infected-recovered model of infectious disease spread.
50 - Jonathan Dubois 2021
We consider the motion of an electron in an atom subjected to a strong linearly polarized laser field. We identify the invariant structures organizing a very specific subset of trajectories, namely recollisions. Recollisions are trajectories which fi rst escape the ionic core (i.e., ionize) and later return to this ionic core, for instance, to transfer the energy gained during the large excursion away from the core to bound electrons. We consider the role played by the directions transverse to the polarization direction in the recollision process. We compute the family of two-dimensional invariant tori associated with a specific hyperbolic-elliptic periodic orbit and their stable and unstable manifolds. We show that these manifolds organize recollisions in phase space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا