ﻻ يوجد ملخص باللغة العربية
The complex investigation of dc transport and magnetic properties of the epitaxial manganite/iridate heterostructure was carried out by mean of X-ray (XRD), dc resistance measurements, ferromagnetic resonance (FMR) and polarized neutron reflectivity (PNR). Epitaxial growth of the heterostructure proceeded according to the cube-to-cube mechanism with the small lattice turn. The dc measurement indicates the presence of a conduction channel at the iridate/manganite interface due to the charge leakage from iridate that makes it hole doped, while the manganite side becomes electron doped. This is confirmed by the first principles calculations based on density functional theory [Sayantika Bhowal, and Sashi Satpathy AIP Conference Proceedings 2005, 020007 (2018)] that show the charge transfer at the interface from the half-filled spin-orbit entangled Jeff = 1/2 state of the iridate to the empty e states of manganite. The neutron scattering data show the turn of magnetization vector of the heterostructure (mainly manganite) on 26 degree closer to the external field with reducing temperature down to 10K. Additional ferromagnetic state appearing at T<100K indicate on emergence of ferromagnetism in the thin (10 nm) paramagnetic SIO film close to the interface. We have measured the dc voltage aroused on the SIO film caused by spin pumping and the anisotropic magnetoresistance in the heterostructure.
Tailoring spin-orbit interactions and Coulomb repulsion are the key features to observe exotic physical phenomena such as magnetic anisotropy and topological spin texture at oxide interfaces. Our study proposes a novel platform for engineering the ma
Charge transfer is of particular importance in manipulating the interface physics in transition-metal oxide heterostructures. In this work, we have fabricated epitaxial bilayers composed of polar 3d LaMnO3 and nonpolar 5d SrIrO3. Systematic magnetic
With a view to electrical spin manipulation and quantum computing applications, recent significant attention has been devoted to semiconductor hole systems, which have very strong spin-orbit interactions. However, experimentally measuring, identifyin
We report an extended family of spin textures in coexisting modes of zero-dimensional polariton condensates spatially confined in tunable open microcavity structures. The coupling between photon spin and angular momentum, which is enhanced in the ope
We investigated the time dependence of two-electron spin states in a double quantum dot fabricated in an InAs nanowire. In this system, spin-orbit interaction has substantial influence on the spin states of confined electrons. Pumping single electron