ﻻ يوجد ملخص باللغة العربية
The iron line and the continuum-fitting methods are currently the two leading techniques for measuring black hole spins with electromagnetic radiation. They can be naturally extended for probing the spacetime geometry around black holes and testing general relativity in the strong field regime. In the past couple of years, there has been significant work to use the iron line method to test the nature of black holes. In this Letter, we use the continuum-fitting method and we show its capability of constraining the spacetime geometry around black holes by analyzing 17 RXTE data of the X-ray binary LMC X-1.
Einsteins theory of General Relativity is one of the pillars of modern physics. For decades, the theory has been mainly tested in the weak field regime with experiments in the Solar System and observations of binary pulsars. Thanks to a new generatio
We consider the observation of stellar-mass black holes binaries with the Laser Interferometer Space Antenna (LISA). Preliminary results based on Fisher information matrix analyses have suggested that gravitational waves from those sources could be v
Gravitational-wave sources offer us unique testbeds for probing strong-field, dynamical and nonlinear aspects of gravity. In this chapter, we give a brief overview of the current status and future prospects of testing General Relativity with gravitat
One century after its formulation, Einsteins general relativity has made remarkable predictions and turned out to be compatible with all experimental tests. Most of these tests probe the theory in the weak-field regime, and there are theoretical and
We present observational confirmation of Hawkings black-hole area theorem based on data from GW150914, finding agreement with the prediction with 97% (95%) probability when we model the ringdown including (excluding) overtones of the quadrupolar mode