ترغب بنشر مسار تعليمي؟ اضغط هنا

Cobordism invariance of topological edge-following states

140   0   0.0 ( 0 )
 نشر من قبل Guo Chuan Thiang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that a spectral gap-filling phenomenon occurs whenever a Hamiltonian operator encounters a coarse index obstruction upon compression to a domain with boundary. Furthermore, the gap-filling spectra contribute to quantised current channels, which follow and are localised at the possibly complicated boundary. This index obstruction is shown to be insensitive to deformations of the domain boundary, so the phenomenon is generic for magnetic Laplacians modelling quantum Hall systems and Chern topological insulators. A key construction is a quasi-equivariant version of Roes algebra of locally compact finite propagation operators.



قيم البحث

اقرأ أيضاً

An edge state is a time-harmonic solution of a conservative wave system, e.g. Schroedinger, Maxwell, which is propagating (plane-wave-like) parallel to, and localized transverse to, a line-defect or edge. Topologically protected edge states are edge states which are stable against spatially localized (even strong) deformations of the edge. First studied in the context of the quantum Hall effect, protected edge states have attracted huge interest due to their role in the field of topological insulators. Theoretical understanding of topological protection has mainly come from discrete (tight-binding) models and direct numerical simulation. In this paper we consider a rich family of continuum PDE models for which we rigorously study regimes where topologically protected edge states exist. Our model is a class of Schroedinger operators on $mathbb{R}^2$ with a background 2D honeycomb potential perturbed by an edge-potential. The edge potential is a domain-wall interpolation, transverse to a prescribed rational edge, between two distinct periodic structures. General conditions are given for the bifurcation of a branch of topologically protected edge states from Dirac points of the background honeycomb structure. The bifurcation is seeded by the zero mode of a 1D effective Dirac operator. A key condition is a spectral no-fold condition for the prescribed edge. We then use this result to prove the existence of topologically protected edge states along zigzag edges of certain honeycomb structures. Our results are consistent with the physics literature and appear to be the first rigorous results on the existence of topologically protected edge states for continuum 2D PDE systems describing waves in a non-trivial periodic medium. We also show that the family of Hamiltonians we study contains cases where zigzag edge states exist, but which are not topologically protected.
The interplay of synchronization and topological band structures with symmetry protected midgap states under the influence of driving and dissipation is largely unexplored. Here we consider a trimer chain of electron shuttles, each consisting of a ha rmonic oscillator coupled to a quantum dot positioned between two electronic leads. Each shuttle is subject to thermal dissipation and undergoes a bifurcation towards self-oscillation with a stable limit cycle if driven by a bias voltage between the leads. By mechanically coupling the oscillators together, we observe synchronized motion at the ends of the chain, which can be explained using a linear stability analysis. Due to the inversion symmetry of the trimer chain, these synchronized states are topologically protected against local disorder. Furthermore, with current experimental feasibility, the synchronized motion can be observed by measuring the dot occupation of each shuttle. Our results open a new avenue to enhance the robustness of synchronized motion by exploiting topology.
We report on the observation of a topologically protected edge state at the interface between two topologically distinct domains of the Su-Schrieffer-Heeger model, which we implement in arrays of evanescently coupled dielectric-loaded surface plasmon polariton waveguides. Direct evidence of the topological character of the edge state is obtained through several independent experiments: Its spatial localization at the interface as well as the restriction to one sublattice is confirmed by real-space leakage radiation microscopy. The corresponding momentum-resolved spectrum obtained by Fourier imaging reveals the midgap position of the edge state as predicted by theory.
The role of mixed states in topological quantum matter is less known than that of pure quantum states. Generalisations of topological phases appearing in pure states had received only quite recently attention in the literature. In particular, it is s till unclear whether the generalisation of the Aharonov-Anandan phase for mixed states due to Uhlmann plays any physical role in the behaviour of the quantum systems. We analyse from a general viewpoint topological phases of mixed states and the robustness of their invariance. In particular, we analyse the role of these phases in the behaviour of systems with a periodic symmetry and their evolution under the influence of an environment preserving its crystalline symmetries.
We experimentally demonstrate topological edge states arising from the valley-Hall effect in twodimensional honeycomb photonic lattices with broken inversion symmetry. We break inversion symmetry by detuning the refractive indices of the two honeycom b sublattices, giving rise to a boron nitride-like band structure. The edge states therefore exist along the domain walls between regions of opposite valley Chern numbers. We probe both the armchair and zig-zag domain walls and show that the former become gapped for any detuning, whereas the latter remain ungapped until a cutoff is reached. The valley-Hall effect provides a new mechanism for the realization of time-reversal invariant photonic topological insulators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا