ﻻ يوجد ملخص باللغة العربية
We prove that a spectral gap-filling phenomenon occurs whenever a Hamiltonian operator encounters a coarse index obstruction upon compression to a domain with boundary. Furthermore, the gap-filling spectra contribute to quantised current channels, which follow and are localised at the possibly complicated boundary. This index obstruction is shown to be insensitive to deformations of the domain boundary, so the phenomenon is generic for magnetic Laplacians modelling quantum Hall systems and Chern topological insulators. A key construction is a quasi-equivariant version of Roes algebra of locally compact finite propagation operators.
An edge state is a time-harmonic solution of a conservative wave system, e.g. Schroedinger, Maxwell, which is propagating (plane-wave-like) parallel to, and localized transverse to, a line-defect or edge. Topologically protected edge states are edge
The interplay of synchronization and topological band structures with symmetry protected midgap states under the influence of driving and dissipation is largely unexplored. Here we consider a trimer chain of electron shuttles, each consisting of a ha
We report on the observation of a topologically protected edge state at the interface between two topologically distinct domains of the Su-Schrieffer-Heeger model, which we implement in arrays of evanescently coupled dielectric-loaded surface plasmon
The role of mixed states in topological quantum matter is less known than that of pure quantum states. Generalisations of topological phases appearing in pure states had received only quite recently attention in the literature. In particular, it is s
We experimentally demonstrate topological edge states arising from the valley-Hall effect in twodimensional honeycomb photonic lattices with broken inversion symmetry. We break inversion symmetry by detuning the refractive indices of the two honeycom