ﻻ يوجد ملخص باللغة العربية
Most of the major planets in the Solar System support populations of co-orbiting bodies, known as Trojans, at their L4 and L5 Lagrange points. In contrast, Earth has only one known co-orbiting companion. This paper presents the results from a search for Earth Trojans using the DECam instrument on the Blanco Telescope at CTIO. This search found no additional Trojans in spite of greater coverage compared to previous surveys of the L5 point. Therefore, the main result of this work is to place the most stringent constraints to date on the population of Earth Trojans. These constraints depend on assumptions regarding the underlying population properties, especially the slope of the magnitude distribution (which in turn depends on the size and albedo distributions of the objects). For standard assumptions, we calculate upper limits to a 90% confidence limit on the L5 population of $N_{ET}<1$ for magnitude $H<15.5$, $N_{ET}=60-85$ for $H<19.7$, and $N_{ET} $= 97 for $H=20.4$. This latter magnitude limit corresponds to Trojans $sim$300 m in size for albedo $0.15$. At H=19.7, these upper limits are consistent with previous L4 Earth Trojan constraints and significantly improve L5 constraints.
The only discovery of Earth Trojan 2010 TK$_7$ and the subsequent launch of OSIRIS-REx motive us to investigate the stability around the triangular Lagrange points $L_4$ and $L_5$ of the Earth. In this paper we present detailed dynamical maps on the
To facilitate multimessenger studies with TeV and PeV astrophysical neutrinos, the IceCube Collaboration has developed a realtime alert system for the highest confidence and best localized neutrino events. In this work we investigate the likelihood o
We present the discovery of a long-term stable L5 (trailing) Neptune Trojan in data acquired to search for candidate Trans-Neptunian objects for the New Horizons spacecraft to fly by during an extended post-Pluto mission. This Neptune Trojan, 2011 HM
The recent discovery of a staggering diversity of planets beyond the Solar System has brought with it a greatly expanded search space for habitable worlds. The Kepler exoplanet survey has revealed that most planets in our interstellar neighborhood ar
Dark matter could be composed of compact dark objects (CDOs). These objects may interact very weakly with normal matter and could move freely {it inside} the Earth. A CDO moving in the inner core of the Earth will have an orbital period near 55 min a