ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Embeddings of Scholarly Periodicals Reveal Complex Disciplinary Organizations

141   0   0.0 ( 0 )
 نشر من قبل Hao Peng
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the structure of knowledge domains is one of the foundational challenges in science of science. Here, we propose a neural embedding technique that leverages the information contained in the citation network to obtain continuous vector representations of scientific periodicals. We demonstrate that our periodical embeddings encode nuanced relationships between periodicals as well as the complex disciplinary and interdisciplinary structure of science, allowing us to make cross-disciplinary analogies between periodicals. Furthermore, we show that the embeddings capture meaningful axes that encompass knowledge domains, such as an axis from soft to hard sciences or from social to biological sciences, which allow us to quantitatively ground periodicals on a given dimension. By offering novel quantification in science of science, our framework may in turn facilitate the study of how knowledge is created and organized.



قيم البحث

اقرأ أيضاً

Citation prediction of scholarly papers is of great significance in guiding funding allocations, recruitment decisions, and rewards. However, little is known about how citation patterns evolve over time. By exploring the inherent involution property in scholarly paper citation, we introduce the Paper Potential Index (PPI) model based on four factors: inherent quality of scholarly paper, scholarly paper impact decaying over time, early citations, and early citers impact. In addition, by analyzing factors that drive citation growth, we propose a multi-feature model for impact prediction. Experimental results demonstrate that the two models improve the accuracy in predicting scholarly paper citations. Compared to the multi-feature model, the PPI model yields superior predictive performance in terms of range-normalized RMSE. The PPI model better interprets the changes in citation, without the need to adjust parameters. Compared to the PPI model, the multi-feature model performs better prediction in terms of Mean Absolute Percentage Error and Accuracy; however, their predictive performance is more dependent on the parameter adjustment.
Scholarly resources, just like any other resources on the web, are subject to reference rot as they frequently disappear or significantly change over time. Digital Object Identifiers (DOIs) are commonplace to persistently identify scholarly resources and have become the de facto standard for citing them. We investigate the notion of persistence of DOIs by analyzing their resolution on the web. We derive confidence in the persistence of these identifiers in part from the assumption that dereferencing a DOI will consistently return the same response, regardless of which HTTP request method we use or from which network environment we send the requests. Our experiments show, however, that persistence, according to our interpretation, is not warranted. We find that scholarly content providers respond differently to varying request methods and network environments and even change their response to requests against the same DOI. In this paper we present the results of our quantitative analysis that is aimed at informing the scholarly communication community about this disconcerting lack of consistency.
We look at the network of mathematicians defined by the hyperlinks between their biographies on Wikipedia. We show how to extract this information using three snapshots of the Wikipedia data, taken in 2013, 2017 and 2018. We illustrate how such Wikip edia data can be used by performing a centrality analysis. These measures show that Hilbert and Newton are the most important mathematicians. We use our example to illustrate the strengths and weakness of centrality measures and to show how to provide estimates of the robustness of centrality measurements. In part, we do this by comparison to results from two other sources: an earlier study of biographies on the MacTutor website and a small informal survey of the opinion of mathematics and physics students at Imperial College London.
Inspired by the social and economic benefits of diversity, we analyze over 9 million papers and 6 million scientists to study the relationship between research impact and five classes of diversity: ethnicity, discipline, gender, affiliation, and acad emic age. Using randomized baseline models, we establish the presence of homophily in ethnicity, gender and affiliation. We then study the effect of diversity on scientific impact, as reflected in citations. Remarkably, of the classes considered, ethnic diversity had the strongest correlation with scientific impact. To further isolate the effects of ethnic diversity, we used randomized baseline models and again found a clear link between diversity and impact. To further support these findings, we use coarsened exact matching to compare the scientific impact of ethnically diverse papers and scientists with closely-matched control groups. Here, we find that ethnic diversity resulted in an impact gain of 10.63% for papers, and 47.67% for scientists.
Modern science is dominated by scientific productions from teams. A recent finding shows that teams with both large and small sizes are essential in research, prompting us to analyze the extent to which a countrys scientific work is carried out by bi g/small teams. Here, using over 26 million publications from Web of Science, we find that Chinas research output is more dominated by big teams than the rest of the world, which is particularly the case in fields of natural science. Despite the global trend that more papers are done by big teams, Chinas drop in small team output is much steeper. As teams in China shift from small to large size, the team diversity that is essential for innovative works does not increase as much as that in other countries. Using the national average as the baseline, we find that the National Natural Science Foundation of China (NSFC) supports fewer small team works than the National Science Foundation of U.S. (NSF) does, implying that big teams are more preferred by grant agencies in China. Our finding provides new insights into the concern of originality and innovation in China, which urges a need to balance small and big teams.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا