ترغب بنشر مسار تعليمي؟ اضغط هنا

Inferring the connectivity of coupled oscillators and anticipating their transition to synchrony through lag-time analysis

62   0   0.0 ( 0 )
 نشر من قبل Cristina Masoller
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The synchronization phenomenon is ubiquitous in nature. In ensembles of coupled oscillators, explosive synchronization is a particular type of transition to phase synchrony that is first-order as the coupling strength increases. Explosive sychronization has been observed in several natural systems, and recent evidence suggests that it might also occur in the brain. A natural system to study this phenomenon is the Kuramoto model that describes an ensemble of coupled phase oscillators. Here we calculate bi-variate similarity measures (the cross-correlation, $rho_{ij}$, and the phase locking value, PLV$_{ij}$) between the phases, $phi_i(t)$ and $phi_j(t)$, of pairs of oscillators and determine the lag time between them as the time-shift, $tau_{ij}$, which gives maximum similarity (i.e., the maximum of $rho_{ij}(tau)$ or PLV$_{ij}(tau)$). We find that, as the transition to synchrony is approached, changes in the distribution of lag times provide an earlier warning of the synchronization transition (either gradual or explosive). The analysis of experimental data, recorded from Rossler-like electronic chaotic oscillators, suggests that these findings are not limited to phase oscillators, as the lag times display qualitatively similar behavior with increasing coupling strength, as in the Kuramoto oscillators. We also analyze the statistical relationship between the lag times between pairs of oscillators and the existence of a direct connection between them. We find that depending on the strength of the coupling, the lags can be informative of the network connectivity.



قيم البحث

اقرأ أيضاً

108 - H.Nakao , K.Arai , K.Nagai 2005
The mechanism of phase synchronization between uncoupled limit-cycle oscillators induced by common external impulsive forcing is analyzed. By reducing the dynamics of the oscillator to a random phase map, it is shown that phase synchronization genera lly occurs when the oscillator is driven by weak external impulses in the limit of large inter-impulse intervals. The case where the inter-impulse intervals are finite is also analyzed perturbatively for small impulse intensity. For weak Poissonian impulses, it is shown that the phase synchronization persists up to the first order approximation.
Critical phenomena in complex networks, and the emergence of dynamical abrupt transitions in the macroscopic state of the system are currently a subject of the outmost interest. We report evidence of an explosive phase synchronization in networks of chaotic units. Namely, by means of both extensive simulations of networks made up of chaotic units, and validation with an experiment of electronic circuits in a star configuration, we demonstrate the existence of a first order transition towards synchronization of the phases of the networked units. Our findings constitute the first prove of this kind of synchronization in practice, thus opening the path to its use in real-world applications.
In this paper we present a systematic, data-driven approach to discovering bespoke coarse variables based on manifold learning algorithms. We illustrate this methodology with the classic Kuramoto phase oscillator model, and demonstrate how our manifo ld learning technique can successfully identify a coarse variable that is one-to-one with the established Kuramoto order parameter. We then introduce an extension of our coarse-graining methodology which enables us to learn evolution equations for the discovered coarse variables via an artificial neural network architecture templated on numerical time integrators (initial value solvers). This approach allows us to learn accurate approximations of time derivatives of state variables from sparse flow data, and hence discover useful approximate differential equation descriptions of their dynamic behavior. We demonstrate this capability by learning ODEs that agree with the known analytical expression for the Kuramoto order parameter dynamics at the continuum limit. We then show how this approach can also be used to learn the dynamics of coarse variables discovered through our manifold learning methodology. In both of these examples, we compare the results of our neural network based method to typical finite differences complemented with geometric harmonics. Finally, we present a series of computational examples illustrating how a variation of our manifold learning methodology can be used to discover sets of effective parameters, reduced parameter combinations, for multi-parameter models with complex coupling. We conclude with a discussion of possible extensions of this approach, including the possibility of obtaining data-driven effective partial differential equations for coarse-grained neuronal network behavior.
The role of a new form of dynamic interaction is explored in a network of generic identical oscillators. The proposed design of dynamic coupling facilitates the onset of a plethora of asymptotic states including synchronous states, amplitude death st ates, oscillation death states, a mixed state (complete synchronized cluster and small amplitude unsynchronized domain), and bistable states (coexistence of two attractors). The dynamical transitions from the oscillatory to death state are characterized using an average temporal interaction approximation, which agrees with the numerical results in temporal interaction. A first-order phase transition behavior may change into a second-order transition in spatial dynamic interaction solely depending on the choice of initial conditions in the bistable regime. However, this possible abrupt first-order like transition is completely non-existent in the case of temporal dynamic interaction. Besides the study on periodic Stuart-Landau systems, we present results for paradigmatic chaotic model of Rossler oscillators and Mac-arthur ecological model.
A delay is known to induce multistability in periodic systems. Under influence of noise, coupled oscillators can switch between coexistent orbits with different frequencies and different oscillation patterns. For coupled phase oscillators we reduce t he delay system to a non-delayed Langevin equation, which allows us to analytically compute the distribution of frequencies, and their corresponding residence times. The number of stable periodic orbits scales with the roundtrip delay time and coupling strength, but the noisy system visits only a fraction of the orbits, which scales with the square root of the delay time and is independent of the coupling strength. In contrast, the residence time in the different orbits is mainly determined by the coupling strength and the number of oscillators, and only weakly dependent on the coupling delay. Finally we investigate the effect of a detuning between the oscillators. We demonstrate the generality of our results with delay-coupled FitzHugh-Nagumo oscillators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا