ﻻ يوجد ملخص باللغة العربية
In this paper we concern ourselves with an incompressible, viscous, isotropic, and periodic micropolar fluid. We find that in the absence of forcing and microtorquing there exists an infinite family of well-behaved solutions, which we call potential microflows, in which the fluid velocity vanishes identically, but the angular velocity of the microstructure is conservative and obeys a linear parabolic system. We then prove that nearby each potential microflow, the nonlinear equations of motion are well-posed globally-in-time, and solutions are stable. Finally, we prove that in the absence of force and microtorque, solutions decay exponentially, and in the presence of force and microtorque obeying certain conditions, solutions have quantifiable decay rates.
Considered herein is a multi-component Novikov equation, which admits bi-Hamiltonian structure, infinitely many conserved quantities and peaked solutions. In this paper, we deduce two blow-up criteria for this system and global existence for some two
The aim of this paper is to establish the $H^1$ global well-posedness for Kirchhoff systems. The new approach to the construction of solutions is based on the asymptotic integrations for strictly hyperbolic systems with time-dependent coefficients. T
In this paper we prove local well-posedness in Orlicz spaces for the biharmonic heat equation $partial_{t} u+ Delta^2 u=f(u),;t>0,;xinR^N,$ with $f(u)sim mbox{e}^{u^2}$ for large $u.$ Under smallness condition on the initial data and for exponential
In this paper, we consider the initial boundary value problem in a cylindrical domain to the three dimensional primitive equations with full eddy viscosity in the momentum equations but with only horizontal eddy diffusivity in the temperature equatio
We are concerned with underlying connections between fluids, elasticity, isometric embedding of Riemannian manifolds, and the existence of wrinkled solutions of the associated nonlinear partial differential equations. In this paper, we develop such c