ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification of all 3 particle S-matrices quadratic in photons or gravitons

150   0   0.0 ( 0 )
 نشر من قبل Subham Dutta Chowdhury
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explicitly construct every kinematically allowed three particle graviton-graviton-$P$ and photon-photon-$P$ S-matrix in every dimension and for every choice of the little group representation of the massive particle $P$. We also explicitly construct the spacetime Lagrangian that generates each of these couplings. In the case of gravitons we demonstrate that this Lagrangian always involves (derivatives of) two factors of the Riemann tensor, and so is always of fourth or higher order in derivatives. This result verifies one of the assumptions made in the recent preprint cite{Chowdhury:2019kaq} while attempting to establish the rigidity of the Einstein tree level S-matrix within the space of local classical theories coupled to a collection of particles of bounded spin.



قيم البحث

اقرأ أيضاً

133 - Ken-ji Hamada 2009
Conformal algebra on R x S^3 derived from quantized gravitational fields is examined. The model we study is a renormalizable quantum theory of gravity in four dimensions described by a combined system of the Weyl action for the traceless tensor mode and the induced Wess-Zumino action managing non-perturbative dynamics of the conformal factor in the metric field. It is shown that the residual diffeomorphism invariance in the radiation^+ gauge is equal to the conformal symmetry, and the conformal transformation preserving the gauge-fixing condition that forms a closed algebra quantum mechanically is given by a combination of naive conformal transformation and a certain field-dependent gauge transformation. The unitarity issue of gravity is discussed in the context of conformal field theory. We construct physical states by solving the conformal invariance condition and calculate their scaling dimensions. It is shown that the conformal symmetry mixes the positive-metric and the negative-metric modes and thus the negative-metric mode does not appear independently as a gauge invariant state at all.
101 - Emi Masaki , Jiro Soda 2018
It is well known that gravitons can convert into photons, and vice versa, in the presence of cosmological magnetic fields. We study this conversion process in the context of atomic dark matter scenario. In this scenario, we can expect cosmological da rk magnetic fields, which are free from the stringent constraint from the cosmic microwave observations. We find that gravitons can effectively convert into dark photons in the presence of cosmological dark magnetic fields. The graviton-dark photon conversion effect may open up a new window for ultra high frequency gravitational waves.
We show that when the gravitational field is treated quantum-mechanically, it induces fluctuations -- noise -- in the lengths of the arms of gravitational wave detectors. The characteristics of the noise depend on the quantum state of the gravitation al field, and can be calculated exactly in several interesting cases. For coherent states the noise is very small, but it can be greatly enhanced in thermal and (especially) squeezed states. Detection of this fundamental noise would constitute direct evidence for the quantization of gravity and the existence of gravitons.
We study the space of all kinematically allowed four photon and four graviton S-matrices, polynomial in scattering momenta. We demonstrate that this space is the permutation invariant sector of a module over the ring of polynomials of the Mandelstam invariants $s$, $t$ and $u$. We construct these modules for every value of the spacetime dimension $D$, and so explicitly count and parameterize the most general four photon and four graviton S-matrix at any given derivative order. We also explicitly list the local Lagrangians that give rise to these S-matrices. We then conjecture that the Regge growth of S-matrices in all physically acceptable classical theories is bounded by $s^2$ at fixed $t$. A four parameter subset of the polynomial photon S-matrices constructed above satisfies this Regge criterion. For gravitons, on the other hand, no polynomial addition to the Einstein S-matrix obeys this bound for $D leq 6$. For $D geq 7$ there is a single six derivative polynomial Lagrangian consistent with our conjectured Regge growth bound. Our conjecture thus implies that the Einstein four graviton S-matrix does not admit any physically acceptable polynomial modifications for $Dleq 6$. A preliminary analysis also suggests that every finite sum of pole exchange contributions to four graviton scattering also such violates our conjectured Regge growth bound, at least when $Dleq 6$, even when the exchanged particles have low spin.
We study quantum noise and decoherence induced by gravitons. We derive a Langevin equation of geodesic deviation in the presence of gravitons. The amplitude of noise correlations tells us that large squeezing is necessary to detect the noise. We also consider the decoherence of spatial superpositions of two massive particles caused by gravitons in the vacuum state and find that gravitons could give a relevant contribution to the decoherence. The decoherence induced by gravitons would offer new vistas to test quantum gravity in tabletop experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا