ترغب بنشر مسار تعليمي؟ اضغط هنا

The viable f(G) gravity models via reconstruction from the observations

36   0   0.0 ( 0 )
 نشر من قبل Seokcheon Lee
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reconstruct the viable f(G) gravity models from the observations and provide the analytic solutions that well describe our numerical results. In order to avoid unphysical challenges that occur during the numerical reconstruction, we generalize f(G) models into f(GA), which is the simple extension of f(G) models with the introduction of a constant A parameter. We employ several observational data together with the stability condition, which reads d2f/dG2 > 0 and must be satisfied in the late-time evolution of the universe, to give proper initial conditions for solving the perturbation equation. As a result, we obtain the analytic functions that match the numerical solutions. Furthermore, it might be interesting if one can find the physical origin of those analytic solutions and its cosmological implications.

قيم البحث

اقرأ أيضاً

We use a combination of observational data in order to reconstruct the free function of f(T) gravity in a model-independent manner. Starting from the data-driven determined dark-energy equation-of-state parameter we are able to reconstruct the f(T) f orm. The obtained function is consistent with the standard {Lambda}CDM cosmology within 1{sigma} confidence level, however the best-fit value experiences oscillatory features. We parametrise it with a sinusoidal function with only one extra parameter comparing to {Lambda}CDM paradigm, which is a small oscillatory deviation from it, close to the best-fit curve, and inside the 1{sigma} reconstructed region. Similar oscillatory dark-energy scenarios are known to be in good agreement with observational data, nevertheless this is the first time that such a behavior is proposed for f(T) gravity. Finally, since the reconstruction procedure is completely model-independent, the obtained data-driven reconstructed f(T) form could release the tensions between {Lambda}CDM estimations and local measurements, such as the H0 and {sigma}8 ones.
We find the general conditions for viable cosmological solution at the background level in bigravity models. Furthermore, we constrain the parameters by comparing to the Union 2.1 supernovae catalog and identify, in some cases analytically, the best fit parameter or the degeneracy curve among pairs of parameters. We point out that a bimetric model with a single free parameter predicts a simple relation between the equation of state and the density parameter, fits well the supernovae data and is a valid and testable alternative to $Lambda$CDM. Additionally, we identify the conditions for a phantom behavior and show that viable bimetric cosmologies cannot cross the phantom divide.
We consider $f(R)$ gravity theories which unify $R^n$ inflation and dark energy models. First, from the final Planck data of the cosmic microwave background, we obtain a condition, $1.977 < n < 2.003$. Next, under this constraint, we investigate loca l-gravity tests for three models. We find that the $R^n$ term can dominate over the dark energy term even at the Earths curvature scale, contrary to intuition; however, the $R^n$ term does not relax or tighten the constraints on the three models.
We explore the cosmological implications of five modified gravity (MG) models by using the recent cosmological observational data, including the recently released SNLS3 type Ia supernovae sample, the cosmic microwave background anisotropy data from t he Wilkinson Microwave Anisotropy Probe 7-yr observations, the baryon acoustic oscillation results from the Sloan Digital Sky Survey data release 7, and the latest Hubble constant measurement utilizing the Wide Field Camera 3 on the Hubble Space Telescope. The MG models considered include the Dvali-Gabadadze-Porrati(DGP) model, two $f(R)$ models, and two $f(T)$ models. We find that compared with the $Lambda$CDM model, MG models can not lead to a appreciable reduction of the $chi^2_{min}$. The analysis of AIC and BIC shows that the simplest cosmological constant model($Lambda$CDM) is still most preferred by the current data, and the DGP model is strongly disfavored. In addition, from the observational constraints, we also reconstruct the evolutions of the growth factor in these models. We find that the current available growth factor data are not enough to distinguish these MG models from the $Lambda$CDM model.
We show that the f(T) gravitational paradigm, in which gravity is described by an arbitrary function of the torsion scalar, can provide a mechanism for realizing bouncing cosmologies, thereby avoiding the Big Bang singularity. After constructing the simplest version of an f(T) matter bounce, we investigate the scalar and tensor modes of cosmological perturbations. Our results show that metric perturbations in the scalar sector lead to a background-dependent sound speed, which is a distinguishable feature from Einstein gravity. Additionally, we obtain a scale-invariant primordial power spectrum, which is consistent with cosmological observations, but suffers from the problem of a large tensor-to-scalar ratio. However, this can be avoided by introducing extra fields, such as a matter bounce curvaton.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا