ﻻ يوجد ملخص باللغة العربية
Period-colour and amplitude-colour (PCAC) relations can be used to probe both the hydrodynamics of outer envelope structure and evolutionary status of Cepheids and RR Lyraes. In this work, we incorporate the PCAC relations for RR Lyraes, BL Her, W Vir and classical Cepheids in a single unifying theory that involves the interaction of the hydrogen ionization front (HIF) and stellar photosphere and the theory of stellar evolution. PC relations for RR Lyraes and classical Cepheids using OGLE-IV data are found to be consistent with this theory: RR Lyraes have shallow/sloped relations at minimum/maximum light whilst long-period ($P>10$ days) Cepheids exhibit sloped/flat PC relations at minimum/maximum light. The differences in the PC relations for Cepheids and RR Lyraes can be explained based on the relative location of the HIF and stellar photosphere which changes depending on their position on the HR diagram. We also extend our analysis of PCAC relations for type II Cepheids in the Galactic bulge, LMC and SMC using OGLE-IV data. We find that BL Her stars have sloped PC relations at maximum and minimum light similar to short-period ($P<10$ days) classical Cepheids. W Vir stars exhibit sloped/flat PC relation at minimum/maximum light similar to long-period classical Cepheids. We also compute state-of-the-art 1D radiation hydrodynamic models of RR Lyraes, BL Her and classical Cepheids using the radial stellar pulsation code in MESA to further test these ideas theoretically and find that the models are generally consistent with this picture. We are thus able to explain PC relations at maximum and minimum light across a broad spectrum of variable star types.
Recent evidence has emerged that the Cepheid PL relation in the LMC is nonlinear in the sense that the existing data are more consistent with two lines of differing slope with a break at a period of 10 days. We review the statistical evidence for thi
Period-color (PC) relations may be used to study the interaction of the stellar photosphere and the hydrogen ionization front (HIF). RR Lyraes (RRLs) and long period classical Cepheids (P > 10d) have been found to exhibit different PC behavior at min
The Cepheid period-luminosity (P-L) relation is regarded as a linear relation (in log[P]) for a wide period range from ~2 to ~100 days. However, several recent controversial works have suggested that the P-L relation derived from the Large Magellanic
We report the discovery of 31 blue, short period, pulsators made using data taken as part of the Rapid Temporal Survey (RATS). We find they have periods between 51-83 mins and full-amplitudes between 0.05-0.65 mag. Using the period-luminosity relatio
We consider the impact of stochastic perturbations on otherwise coherent oscillations of classical pulsators. The resulting dynamics are modelled by a driven damped harmonic oscillator subject to either an external or an internal forcing and white no