ﻻ يوجد ملخص باللغة العربية
Existing approaches to improve the performances of convolutional neural networks by optimizing the local architectures or deepening the networks tend to increase the size of models significantly. In order to deploy and apply the neural networks to edge devices which are in great demand, reducing the scale of networks are quite crucial. However, It is easy to degrade the performance of image processing by compressing the networks. In this paper, we propose a method which is suitable for edge devices while improving the efficiency and effectiveness of inference. The joint decision of multi-participants, mainly contain multi-layers and multi-networks, can achieve higher classification accuracy (0.26% on CIFAR-10 and 4.49% on CIFAR-100 at most) with similar total number of parameters for classical convolutional neural networks.
This paper describes AutoFocus, an efficient multi-scale inference algorithm for deep-learning based object detectors. Instead of processing an entire image pyramid, AutoFocus adopts a coarse to fine approach and only processes regions which are like
Computational micromagnetics has become an essential tool in academia and industry to support fundamental research and the design and development of devices. Consequently, computational micromagnetics is widely used in the community, and the fraction
State-of-the-art convolutional neural networks (CNNs) yield record-breaking predictive performance, yet at the cost of high-energy-consumption inference, that prohibits their widely deployments in resource-constrained Internet of Things (IoT) applica
Dynamic inference is a feasible way to reduce the computational cost of convolutional neural network(CNN), which can dynamically adjust the computation for each input sample. One of the ways to achieve dynamic inference is to use multi-stage neural n
Increased data gathering capacity, together with the spread of data analytics techniques, has prompted an unprecedented concentration of information related to the individuals preferences in the hands of a few gatekeepers. In the present paper, we sh