ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards More Efficient and Effective Inference: The Joint Decision of Multi-Participants

55   0   0.0 ( 0 )
 نشر من قبل Hui Zhu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing approaches to improve the performances of convolutional neural networks by optimizing the local architectures or deepening the networks tend to increase the size of models significantly. In order to deploy and apply the neural networks to edge devices which are in great demand, reducing the scale of networks are quite crucial. However, It is easy to degrade the performance of image processing by compressing the networks. In this paper, we propose a method which is suitable for edge devices while improving the efficiency and effectiveness of inference. The joint decision of multi-participants, mainly contain multi-layers and multi-networks, can achieve higher classification accuracy (0.26% on CIFAR-10 and 4.49% on CIFAR-100 at most) with similar total number of parameters for classical convolutional neural networks.



قيم البحث

اقرأ أيضاً

This paper describes AutoFocus, an efficient multi-scale inference algorithm for deep-learning based object detectors. Instead of processing an entire image pyramid, AutoFocus adopts a coarse to fine approach and only processes regions which are like ly to contain small objects at finer scales. This is achieved by predicting category agnostic segmentation maps for small objects at coarser scales, called FocusPixels. FocusPixels can be predicted with high recall, and in many cases, they only cover a small fraction of the entire image. To make efficient use of FocusPixels, an algorithm is proposed which generates compact rectangular FocusChips which enclose FocusPixels. The detector is only applied inside FocusChips, which reduces computation while processing finer scales. Different types of error can arise when detections from FocusChips of multiple scales are combined, hence techniques to correct them are proposed. AutoFocus obtains an mAP of 47.9% (68.3% at 50% overlap) on the COCO test-dev set while processing 6.4 images per second on a Titan X (Pascal) GPU. This is 2.5X faster than our multi-scale baseline detector and matches its mAP. The number of pixels processed in the pyramid can be reduced by 5X with a 1% drop in mAP. AutoFocus obtains more than 10% mAP gain compared to RetinaNet but runs at the same speed with the same ResNet-101 backbone.
55 - Marijan Beg , Martin Lang , 2021
Computational micromagnetics has become an essential tool in academia and industry to support fundamental research and the design and development of devices. Consequently, computational micromagnetics is widely used in the community, and the fraction of time researchers spend performing computational studies is growing. We focus on reducing this time by improving the interface between the numerical simulation and the researcher. We have designed and developed a human-centred research environment called Ubermag. With Ubermag, scientists can control an existing micromagnetic simulation package, such as OOMMF, from Jupyter notebooks. The complete simulation workflow, including definition, execution, and data analysis of simulation runs, can be performed within the same notebook environment. Numerical libraries, co-developed by the computational and data science community, can immediately be used for micromagnetic data analysis within this Python-based environment. By design, it is possible to extend Ubermag to drive other micromagnetic packages from the same environment.
State-of-the-art convolutional neural networks (CNNs) yield record-breaking predictive performance, yet at the cost of high-energy-consumption inference, that prohibits their widely deployments in resource-constrained Internet of Things (IoT) applica tions. We propose a dual dynamic inference (DDI) framework that highlights the following aspects: 1) we integrate both input-dependent and resource-dependent dynamic inference mechanisms under a unified framework in order to fit the varying IoT resource requirements in practice. DDI is able to both constantly suppress unnecessary costs for easy samples, and to halt inference for all samples to meet hard resource constraints enforced; 2) we propose a flexible multi-grained learning to skip (MGL2S) approach for input-dependent inference which allows simultaneous layer-wise and channel-wise skipping; 3) we extend DDI to complex CNN backbones such as DenseNet and show that DDI can be applied towards optimizing any specific resource goals including inference latency or energy cost. Extensive experiments demonstrate the superior inference accuracy-resource trade-off achieved by DDI, as well as the flexibility to control such trade-offs compared to existing peer methods. Specifically, DDI can achieve up to 4 times computational savings with the same or even higher accuracy as compared to existing competitive baselines.
Dynamic inference is a feasible way to reduce the computational cost of convolutional neural network(CNN), which can dynamically adjust the computation for each input sample. One of the ways to achieve dynamic inference is to use multi-stage neural n etwork, which contains a sub-network with prediction layer at each stage. The inference of a input sample can exit from early stage if the prediction of the stage is confident enough. However, design a multi-stage CNN architecture is a non-trivial task. In this paper, we introduce a general framework, ENAS4D, which can efficiently search for optimal multi-stage CNN architecture for dynamic inference in a well-designed search space. Firstly, we propose a method to construct the search space with multi-stage convolution. The search space include different numbers of layers, different kernel sizes and different numbers of channels for each stage and the resolution of input samples. Then, we train a once-for-all network that supports to sample diverse multi-stage CNN architecture. A specialized multi-stage network can be obtained from the once-for-all network without additional training. Finally, we devise a method to efficiently search for the optimal multi-stage network that trades the accuracy off the computational cost taking the advantage of once-for-all network. The experiments on the ImageNet classification task demonstrate that the multi-stage CNNs searched by ENAS4D consistently outperform the state-of-the-art method for dyanmic inference. In particular, the network achieves 74.4% ImageNet top-1 accuracy under 185M average MACs.
Increased data gathering capacity, together with the spread of data analytics techniques, has prompted an unprecedented concentration of information related to the individuals preferences in the hands of a few gatekeepers. In the present paper, we sh ow how platforms performances still appear astonishing in relation to some unexplored data and networks properties, capable to enhance the platforms capacity to implement steering practices by means of an increased ability to estimate individuals preferences. To this end, we rely on network science whose analytical tools allow data representations capable of highlighting relationships between subjects and/or items, extracting a great amount of information. We therefore propose a measure called Network Information Patrimony, considering the amount of information available within the system and we look into how platforms could exploit data stemming from connected profiles within a network, with a view to obtaining competitive advantages. Our measure takes into account the quality of the connections among nodes as the one of a hypothetical user in relation to its neighbourhood, detecting how users with a good neighbourhood -- hence of a superior connections set -- obtain better information. We tested our measures on Amazons instances, obtaining evidence which confirm the relevance of information extracted from nodes neighbourhood in order to steer targeted users.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا