ترغب بنشر مسار تعليمي؟ اضغط هنا

Deformed relativistic Hartree-Bogoliubov theory in continuum with point coupling functional: examples of even-even Nd isotopes

98   0   0.0 ( 0 )
 نشر من قبل Jie Meng
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of this work is to develop the deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc) theory based on the point-coupling density functionals and extend it to provide a unified description for all even-even nuclei in the nuclear chart by overcoming all possible challenges. The nuclear superfluidity is considered via Bogoliubov transformation. Densities and potentials are expanded in terms of Legendre polynomials to include the axial deformation degrees of freedom. Sophisticated relativistic Hartree-Bogoliubov equations in coordinate space are solved in the DiracWoods-Saxon basis to consider the continuum effects. Numerical checks are performed from light nuclei to heavy nuclei. The techniques to construct the DRHBc mass table for even-even nuclei are explored. The DRHBc theory is extended to study heavier nuclei beyond magnesium isotopes. Taking Nd isotopes as examples, the experimental binding energies, two-neutron separation energies, quadrupole deformations, and charge radii are reproduced rather well. The deformation and continuum play essential roles in the description of nuclear masses and prediction of drip-line nuclei. By examining the single-particle levels in the canonical basis and their contributions to the total density, the thickness of the neutron skin, the particles number in continuum, and the Coulomb barrier, the exotic structures including the neutron skin and the proton radioactivity are predicted.



قيم البحث

اقرأ أيضاً

Background: A global description of the ground-state properties of nuclei in a wide mass range in a unified manner is desirable not only for understanding exotic nuclei but for providing nuclear data for applications. Purpose: We demonstrate the KIDS functional describes the ground states appropriately with respect to the existing data and predictions for a possible application of the functional to all the nuclei by taking Nd isotopes as examples. Method: The Kohn-Sham-Bogoliubov equation is solved for the Nd isotopes with the neutron numbers ranging from 60 to 160 by employing the KIDS functionals constructed to satisfy both neutron-matter equation of state or neutron star observation and selected nuclear data. Results: Considering the nuclear deformation improves the description of the binding energies and radii. We find that the discrepancy from the experimental data is more significant for neutron-rich/deficient isotopes and this can be made isotope independent by changing the slope parameter of the symmetry energy. Conclusions: The KIDS functional is applied to the mid-shell nuclei for the first time. The onset and evolution of deformation are nicely described for the Nd isotopes. The KIDS functional is competent to a global fitting for a better description of nuclear properties in the nuclear chart.
The location of the neutron drip line, currently known for only the lightest elements, remains a fundamental question in nuclear physics. Its description is a challenge for microscopic nuclear energy density functionals, as it must take into account in a realistic way not only the nuclear potential, but also pairing correlations, deformation effects and coupling to the continuum. The recently developed deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc) aims to provide a unified description of even-even nuclei throughout the nuclear chart. Here, the DRHBc with the successful density functional PC-PK1 is used to investigate whether and how deformation influences the prediction for the neutron drip-line location for even-even nuclei with 8<=Z<=20, where many isotopes are predicted deformed. The results are compared with those based on the spherical relativistic continuum Hartree-Bogoliubov (RCHB) theory and discussed in terms of shape evolution and the variational principle. It is found that the Ne and Ar drip-line nuclei are different after the deformation effect is included. The direction of the change is not necessarily towards an extended drip line, but rather depends on the evolution of the degree of deformation towards the drip line. Deformation effects as well as pairing and continuum effects treated in a consistent way can affect critically the theoretical description of the neutron drip-line location.
364 - J. A. Sheikh , G. H. Bhat , Y. Sun 2008
We expand the triaxial projected shell model basis to include triaxially-deformed multi-quasiparticle states. This allows us to study the yrast and gamma-vibrational bands up to high spins for both gamma-soft and well-deformed nuclei. As the first ap plication, a systematic study of the high-spin states in Er-isotopes is performed. The calculated yrast and gamma-bands are compared with the known experimental data, and it is shown that the agreement between theory and experiment is quite satisfactory. The calculation leads to predictions for bands based on one- and two-gamma phonon where current data are still sparse. It is observed that gamma-bands for neutron-deficient isotopes of 156Er and 158Er are close to the yrast band, and further these bands are predicted to be nearly degenerate for high-spin states.
The finite-temperature linear response theory based on the finite-temperature relativistic Hartree-Bogoliubov (FT-RHB) model is developed in the charge-exchange channel to study the temperature evolution of spin-isospin excitations. Calculations are performed self-consistently with relativistic point-coupling interactions DD-PC1 and DD-PCX. In the charge-exchange channel, the pairing interaction can be split into isovector ($T = 1$) and isoscalar ($T = 0$) parts. For the isovector component, the same separable form of the Gogny D1S pairing interaction is used both for the ground-state calculation as well as for the residual interaction, while the strength of the isoscalar pairing in the residual interaction is determined by comparison with experimental data on Gamow-Teller resonance (GTR) and Isobaric analog resonance (IAR) centroid energy differences in even-even tin isotopes. The temperature effects are introduced by treating Bogoliubov quasiparticles within a grand-canonical ensemble. Thus, unlike the conventional formulation of the quasiparticle random-phase approximation (QRPA) based on the Bardeen-Cooper-Schrieffer (BCS) basis, our model is formulated within the Hartree-Fock-Bogoliubov (HFB) quasiparticle basis. Implementing a relativistic point-coupling interaction and a separable pairing force allows for the reduction of complicated two-body residual interaction matrix elements, which considerably decreases the dimension of the problem in the coordinate space. The main advantage of this method is to avoid the diagonalization of a large QRPA matrix, especially at finite temperature where the size of configuration space is significantly increased. The implementation of the linear response code is used to study the temperature evolution of IAR, GTR, and spin-dipole resonance (SDR) in even-even tin isotopes in the temperature range $T = 0 - 1.5$ MeV.
The ground-state bands (GSBs) in the even-even hafnium isotopes $^{170-184}$Hf are investigated by using the cranked shell model (CSM) with pairing correlations treated by the particle-number conserving (PNC) method. The experimental kinematic moment s of inertia are reproduced very well by theoretical calculations. The second upbending of the GSB at high frequency $hbaromegaapprox0.5$ MeV observed (predicted) in $^{172}$Hf ($^{170,174-178}$Hf) attributes to the sudden alignments of the proton high-$j$ orbitals $pi1i_{13/2}$ $(1/2^{+}[660])$, $pi1h_{9/2}$ $(1/2^{-}[541])$ and orbital $pi1h_{11/2}$ $(7/2^{-}[523])$. The first upbendings of GSBs at low frequency $hbaromega=0.2-0.3$ MeV in $^{170-178}$Hf, which locate below the deformed neutron shell $N=108$, attribute to the alignment of the neutron orbital $ u1i_{13/2}$. For the heavier even-even isotopes $^{180-184}$Hf, compared to the lighter isotopes, the first band-crossing is delayed to the high frequency due to the existence of the deformed shells $N=108,116$. The upbendings of GSBs in $^{180-184}$Hf are predicted to occur at $hbaromegaapprox0.5$MeV, which come from the sharp raise of the simultaneous alignments of both proton $pi1i_{13/2}$, $pi1h_{9/2}$ and neutron $ u2g_{9/2}$ orbitals. The pairing correlation plays a very important role in the rotational properties of GSBs in even-even isotopes $^{180-184}$Hf. Its effects on upbendings and band-crossing frequencies are investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا