ترغب بنشر مسار تعليمي؟ اضغط هنا

Simplified 3D GCM modelling of the irradiated brown dwarf WD0137-349B

107   0   0.0 ( 0 )
 نشر من قبل Elspeth Lee Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: White dwarf - Brown dwarf short period binaries (P$_{rm orb}$ $lesssim$ 2 hours) are some of the most extreme irradiated atmospheric environments known. These systems offer an opportunity to explore theoretical and modelling efforts of irradiated atmospheres different to typical hot Jupiter systems. Aims: We aim to investigate the three dimensional atmospheric structural and dynamical properties of the Brown dwarf WD0137-349B. Methods: We use the three dimensional GCM model Exo-FMS, with a dual-band grey radiative-transfer scheme to model the atmosphere of WD0137-349B. The results of the GCM model are post-processed using the three dimensional Monte Carlo radiative-transfer model textsc{cmcrt}. Results: Our results suggest inefficient day-night energy transport and a large day-night temperature contrast for WD0137-349B. Multiple flow patterns are present, shifting energy asymmetrically eastward or westward depending on their zonal direction and latitude. Regions of overturning are produced on the western terminator. We are able to reproduce the start of the system near-IR emission excess at $gtrsim$ 1.95 $mu$m as observed by the GNIRS instrument. Our model over predicts the IR phase curve fluxes by factors of $approx$1-3, but generally fits the shape of the phase curves well. Chemical kinetic modelling using textsc{vulcan} suggests a highly ionised region at high altitudes can form on the dayside of the Brown dwarf. Conclusions: We present a first attempt at simulating the atmosphere of a short period White dwarf - Brown dwarf binary in a 3D setting. Further studies into the radiative and photochemical heating from the UV irradiation is required to more accurately capture the energy balance inside the Brown dwarf atmosphere. Cloud formation may also play an important role in shaping the emission spectra of the Brown dwarf.



قيم البحث

اقرأ أيضاً

WD0137-349 is a white dwarf-brown dwarf binary system in a 116 minute orbit. We present radial velocity observations and multiwaveband photometry from V, R and I in the optical, to J, H and Ks in the near-IR and [3.6], [4.5], [5.8] and [8.0] microns in the mid-IR. The photometry and lightcurves show variability in all wavebands, with the amplitude peaking at [4.5] microns, where the system is also brightest. Fluxes and brightness temperatures were computed for the heated and unheated atmosphere of the brown dwarf (WD0137-349B) using synthetic spectra of the white dwarf using model atmosphere simulations. We show that the flux from the brown dwarf dayside is brighter than expected in the Ks and [4.5] micron bands when compared to models of irradiated brown dwarfs with full energy circulation and suggest this over-luminosity may be attributed to H2 fluorescence or H3+ being generated in the atmosphere by the UV irradiation.
We present new optical and near-infrared spectra of WD0137-349; a close white dwarf - brown dwarf non-interacting binary system with a period of $approx$114 minutes. We have confirmed the presence of H$alpha$ emission and discovered He, Na, Mg, Si, K , Ca, Ti, and Fe emission lines originating from the brown dwarf atmosphere. This is the first brown dwarf atmosphere to have been observed to exhibit metal emission lines as a direct result of intense irradiation. The equivalent widths of many of these lines show a significant difference between the day and night sides of the brown dwarf. This is likely an indication that efficient heat redistribution may not be happening on this object, in agreement with models of hot Jupiter atmospheres. The H$alpha$ line strength variation shows a strong phase dependency as does the width. We have simulated the Ca II emission lines using a model that includes the brown dwarf Roche geometry and limb darkening and we estimate the mass ratio of the system to be 0.135$pm$0.004. We also apply a gas-phase equilibrium code using a prescribed drift-phoenix model to examine how the chemical composition of the brown dwarf upper atmosphere would change given an outward temperature increase, and discuss the possibility that this would induce a chromosphere above the brown dwarf atmosphere.
We present Spitzer observations at 3.6 and 4.5 microns and a near-infrared IRTF SpeX spectrum of the irradiated brown dwarf NLTT5306B. We determine that the brown dwarf has a spectral type of L5 and is likely inflated, despite the low effective tempe rature of the white dwarf primary star. We calculate brightness temperatures in the Spitzer wavebands for both the model radius, and Roche Lobe radius of the brown dwarf, and conclude that there is very little day-night side temperature difference. We discuss various mechanisms by which NLTT5306B may be inflated, and determine that while low mass brown dwarfs (M<35 MJup) are easily inflated by irradiation from their host star, very few higher mass brown dwarfs are inflated. The higher mass brown dwarfs that are inflated may be inflated by magnetic interactions or may have thicker clouds.
The physical properties of brown dwarf discs, in terms of their shapes and sizes, are still largely unexplored by observations. To what extent brown dwarf discs are similar to scaled-down T Tauri discs is currently unknown, and this work is a step to wards establishing a relationship through the eventual modelling of future observations. We use observations of the brown dwarf disc $rho$ Oph 102 to infer a fiducial model around which we build a small grid of brown dwarf disc models, in order to model the CO, HCN, and HCO+ line fluxes and the chemistry which drives their abundances. These are the first brown dwarf models to be published which relate detailed, 2D radiation thermochemical disc models to observational data. We predict that moderately extended ALMA antenna configurations will spatially resolve CO line emission around brown dwarf discs, and that HCN and HCO+ will be detectable in integrated flux, following our conclusion that the flux ratios of these molecules to CO emission are comparable to that of T Tauri discs. These molecules have not yet been observed in sub-mm wavelengths in a brown dwarf disc, yet they are crucial tracers of the warm surface-layer gas and of ionization in the outer parts of the disc. We present the prediction that if the physical and chemical processes in brown dwarf discs are similar to those that occur in T Tauri discs -- as our models suggest -- then the same diagnostics that are used for T Tauri discs can be used for brown dwarf discs (such as HCN and HCO+ lines that have not yet been observed in the sub-mm), and that these lines should be observable with ALMA. Through future observations, either confirmation (or refutation) of these ideas about brown dwarf disc chemistry will have strong implications for our understanding of disc chemistry, structure, and subsequent planet formation in brown dwarf discs.
It is well-known that stars with giant planets are on average more metal-rich than stars without giant planets, whereas stars with detected low-mass planets do not need to be metal-rich. With the aim of studying the weak boundary that separates giant planets and brown dwarfs (BDs) and their formation mechanism, we analyze the spectra of a sample of stars with already confirmed BD companions both by radial velocity and astrometry. We employ standard and automatic tools to perform an EW-based analysis and to derive chemical abundances from CORALIE spectra of stars with BD companions. We compare these abundances with those of stars without detected planets and with low-mass and giant-mass planets. We find that stars with BDs do not have metallicities and chemical abundances similar to those of giant-planet hosts but they resemble the composition of stars with low-mass planets. The distribution of mean abundances of $alpha$-elements and iron peak elements of stars with BDs exhibit a peak at about solar abundance whereas for stars with low-mass and high-mass planets the [X$_alpha$/H] and [X$_{rm Fe}$/H] peak abundances remain at $sim -0.1$~dex and $sim +0.15$~dex, respectively. We display these element abundances for stars with low-mass and high-mass planets, and BDs versus the minimum mass, $m_C sin i$, of the most-massive substellar companion in each system, and we find a maximum in $alpha$-element as well as Fe-peak abundances at $m_C sin i sim 1.35pm 0.20$ jupiter masses. We discuss the implication of these results in the context of the formation scenario of BDs in comparison with that of giant planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا