ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for the double-beta decay of 82Se to the excited states of 82Kr with NEMO-3

88   0   0.0 ( 0 )
 نشر من قبل Laurent Simard
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The double-beta decay of 82Se to the 0+1 excited state of 82Kr has been studied with the NEMO-3 detector using 0.93 kg of enriched 82Se measured for 4.75 y, corresponding to an exposure of 4.42 kg y. A dedicated analysis to reconstruct the gamma-rays has been performed to search for events in the 2e2g channel. No evidence of a 2nbb decay to the 0+1 state has been observed and a limit of T2n 1/2(82Se; 0+gs -> 0+1) > 1.3 1021 y at 90% CL has been set. Concerning the 0nbb decay to the 0+1 state, a limit for this decay has been obtained with T0n 1/2(82Se; 0+g s -> 0+1) > 2.3 1022 y at 90% CL, independently from the 2nbb decay process. These results are obtained for the first time with a tracko-calo detector, reconstructing every particle in the final state.



قيم البحث

اقرأ أيضاً

151 - R.Arnold , C.Augier , J.Baker 2006
The double beta decay of 100Mo to the 0^+_1 and 2^+_1 excited states of 100Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of 100Mo to the excited 0^+_1 state is measured to be T^(2nu)_1/2 = [5.7^{+1.3}_{-0.9}(stat)+/-0.8(syst)]x 10^20 y. The signal-to-background ratio is equal to 3. Information about energy and angular distributions of emitted electrons is also obtained. No evidence for neutrinoless double beta decay to the excited 0^+_1 state has been found. The corresponding half-life limit is T^(0nu)_1/2(0^+ --> 0^+_1) > 8.9 x 10^22 y (at 90% C.L.). The search for the double beta decay to the 2^+_1 excited state has allowed the determination of limits on the half-life for the two neutrino mode T^(2nu)_1/2(0^+ --> 2^+_1) > 1.1 x 10^21 y (at 90% C.L.) and for the neutrinoless mode T^(0nu)_1/2(0^+ --> 2^+_1) > 1.6 x 10^23 y (at 90% C.L.).
We report the results of a search for the neutrinoless double-$beta$ decay (0$ ubetabeta$) of $^{100}$Mo, using the NEMO-3 detector to reconstruct the full topology of the final state events. With an exposure of 34.7 kg.y, no evidence for the 0$ ubet abeta$ signal has been found, yielding a limit for the light Majorana neutrino mass mechanism of $T_{1/2}(0 ubetabeta)>1.1 times 10^{24}$ years (90% C.L.) once both statistical and systematic uncertainties are taken into account. Depending on the Nuclear Matrix Elements this corresponds to an upper limit on the Majorana effective neutrino mass of $< m_{ u} > < 0.3-0.9$ eV (90% C.L.). Constraints on other lepton number violating mechanisms of 0$ ubetabeta$ decays are also given. Searching for high-energy double electron events in all suitable sources of the detector, no event in the energy region [3.2-10] MeV is observed for an exposure of 47 kg.y.
119 - I. Dafinei , S. Nagorny , S. Pirro 2017
High purity Zinc Selenide (ZnSe) crystals are produced starting from elemental Zn and Se to be used for the search of the neutrinoless double beta decay (0{ u}DBD) of 82Se. In order to increase the number of emitting nuclides, enriched 82Se is used. Dedicated production lines for the synthesis and conditioning of the Zn82Se powder in order to make it suitable for crystal growth were assembled compliant with radio-purity constraints specific to rare event physics experiments. Besides routine check of impurities concentration, high sensitivity measurements are made for radio-isotope concentrations in raw materials, reactants, consumables, ancillaries and intermediary products used for ZnSe crystals production. Indications are given on the crystals perfection and how it is achieved. Since very expensive isotopically enriched material (82Se) is used, a special attention is given for acquiring the maximum yield in the mass balance of all production stages. Production and certification protocols are presented and resulting ready-to-use Zn82Se crystals are described.
190 - R. Arnold , C. Augier , J.D. Baker 2015
The NEMO-3 detector, which had been operating in the Modane Underground Laboratory from 2003 to 2010, was designed to search for neutrinoless double $beta$ ($0 ubetabeta$) decay. We report final results of a search for $0 ubetabeta$ decays with $6.91 4$ kg of $^{100}$Mo using the entire NEMO-3 data set with a detector live time of $4.96$ yr, which corresponds to an exposure of 34.3 kg$cdot$yr. We perform a detailed study of the expected background in the $0 ubetabeta$ signal region and find no evidence of $0 ubetabeta$ decays in the data. The level of observed background in the $0 ubetabeta$ signal region $[2.8-3.2]$ MeV is $0.44 pm 0.13$ counts/yr/kg, and no events are observed in the interval $[3.2-10]$ MeV. We therefore derive a lower limit on the half-life of $0 ubetabeta$ decays in $^{100}$Mo of $T_{1/2}(0 ubetabeta)> 1.1 times 10^{24}$ yr at the $90%$ Confidence Level, under the hypothesis of light Majorana neutrino exchange. Depending on the model used for calculating nuclear matrix elements, the limit for the effective Majorana neutrino mass lies in the range $langle m_{ u} rangle < 0.33$--$0.62$ eV. We also report constraints on other lepton-number violating mechanisms for $0 ubetabeta$ decays.
The NEMO-3 experiment at the Modane Underground Laboratory has investigated the double-$beta$ decay of $^{48}{rm Ca}$. Using $5.25$ yr of data recorded with a $6.99,{rm g}$ sample of $^{48}{rm Ca}$, approximately $150$ double-$beta$ decay candidate e vents have been selected with a signal-to-background ratio greater than $3$. The half-life for the two-neutrino double-$beta$ decay of $^{48}{rm Ca}$ has been measured to be $T^{2 u}_{1/2},=,[6.4, ^{+0.7}_{-0.6}{rm (stat.)} , ^{+1.2}_{-0.9}{rm (syst.)}] times 10^{19},{rm yr}$. A search for neutrinoless double-$beta$ decay of $^{48}{rm Ca}$ yields a null result and a corresponding lower limit on the half-life is found to be $T^{0 u}_{1/2} > 2.0 times 10^{22},{rm yr}$ at $90%$ confidence level, translating into an upper limit on the effective Majorana neutrino mass of $< m_{betabeta} > < 6.0 - 26$ ${rm eV}$, with the range reflecting different nuclear matrix element calculations. Limits are also set on models involving Majoron emission and right-handed currents.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا