ترغب بنشر مسار تعليمي؟ اضغط هنا

Diatomic rovibronic transitions as potential probes for proton-to-electron mass ratio across cosmological time

121   0   0.0 ( 0 )
 نشر من قبل Anna-Maree Syme
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Astrophysical molecular spectroscopy is an important method of searching for new physics through probing the variation of the proton-to-electron mass ratio, $mu$, with existing constraints limiting variation to a fractional change of less than 10$^{-17}$/year. To improve on this constraint and therefore provide better guidance to theories of new physics, new molecular probes will be useful. These probes must have spectral transitions that are observable astrophysically and have different sensitivities to variation in the proton-to-electron mass ratio. Here, we concisely detail how astrophysical observations constrain the set of potential molecular probes and promising sensitive transitions based on how the frequency and intensity of these transitions align with available telescopes and observational constraints. Our detailed investigation focuses on rovibronic transitions in astrophysical diatomic molecules, using the spectroscopic models of 11 diatomics to identify sensitive transitions and probe how they generally arise in real complex molecules with many electronic states and fine structure. While none of the 11 diatomics investigated have sensitive transitions likely to be astrophysically observable, we have found that at high temperatures (1000 K) five of these diatomics have a significant number of low intensity sensitive transitions arising from an accidental near-degeneracy between vibrational levels in the ground and excited electronic state. This insight enables screening of all astrophysical diatomics as potential probes of proton-to-electron mass variation, with CN, CP, SiN and SiC being the most promising candidates for further investigation for sensitivity in rovibronic transitions.



قيم البحث

اقرأ أيضاً

Astrophysical molecular spectroscopy is an important means of searching for new physics through probing the variation of the proton-to-electron mass ratio, $mu$. New molecular probes could provide tighter constraints on the variation of $mu$ and bett er direction for theories of new physics. Here we summarise our previous paper citep{19SyMoCu.CN} for astronomers, highlighting the importance of accurate estimates of peak molecular abundance and temperature as well as spectral resolution and sensitivity of telescopes in different regions of the electromagnetic spectrum. Whilst none of the 11 astrophysical diatomic molecules we investigated showed enhanced sensitive rovibronic transitions at observable intensities for astrophysical environments, we have gained a better understanding of the factors that contribute to high sensitivities. From our results, CN, CP, SiN and SiC have shown the most promise of all astrophysical diatomic molecules for further investigation, with further work currently being done on CN.
Recently, methanol was identified as a sensitive target system to probe variations of the proton-to-electron mass ratio $mu$ [Jansen emph{et al.} Phys. Rev. Lett. textbf{106}, 100801 (2011)]. The high sensitivity of methanol originates from the inter play between overall rotation and hindered internal rotation of the molecule -- i.e. transitions that convert internal rotation energy into overall rotation energy, or vice versa, give rise to an enhancement of the sensitivity coefficient, $K_{mu}$. As internal rotation is a common phenomenon in polyatomic molecules, it is likely that other molecules display similar or even larger effects. In this paper we generalize the concepts that form the foundation of the high sensitivity in methanol and use this to construct an approximate model which allows to estimate the sensitivities of transitions in internal rotor molecules with $C_{3v}$ symmetry, without performing a full calculation of energy levels. We find that a reliable estimate of transition sensitivities can be obtained from the three rotational constants ($A$, $B$, and $C$) and three torsional constants ($F$, $V_3$ and $rho$). This model is verified by comparing obtained sensitivities for methanol, acetaldehyde, acetamide, methyl formate and acetic acid with a full analysis of the molecular Hamiltonian. From the molecules considered, methanol appears to be the most suitable candidate for laboratory and cosmological tests searching for a possible variation of $mu$.
119 - S.P. Ellingsen 2012
We have used the Australia Telescope Compact Array to measure the absorption from the 2(0) - 3(-1}E 12.2 GHz transition of methanol towards the z=0.89 lensing galaxy in the PKS B 1830-211 gravitational lens system. Comparison of the velocity of the m ain absorption feature with the published absorption spectrum from the 1(0) - 2(-1)E transition of methanol shows that they differ by -0.6 +/- 1.6 km/s . We can use these observations to constrain the changes in the proton-to-electron mass ratio from z=0.89 to the present to 0.8 +/- 2.1 x 10^-7. This result is consistent, and of similar precision to recent observations at z = 0.68 achieved through comparison of a variety of rotational and inversion transitions, and approximately a factor of 2 better than previous constraints obtained in this source. Future more sensitive observations which incorporate additional rotational methanol transitions offer the prospect of improving current results by a factor of 5-10.
186 - Adrian L. Malec 2010
Molecular transitions recently discovered at redshift z_abs=2.059 toward the bright background quasar J2123-0050 are analysed to limit cosmological variation in the proton-to-electron mass ratio, mu=m_p/m_e. Observed with the Keck telescope, the opti cal echelle spectrum has the highest resolving power and largest number (86) of H_2 transitions in such analyses so far. Also, (seven) HD transitions are used for the first time to constrain mu-variation. These factors, and an analysis employing the fewest possible free parameters, strongly constrain mus relative deviation from the current laboratory value: dmu/mu =(+5.6+/-5.5_stat+/-2.9_sys)x10^{-6}, indicating an insignificantly larger mu in the absorber. This is the first Keck result to complement recent null constraints from three systems at z_abs>2.5 observed with the Very Large Telescope. The main possible systematic errors stem from wavelength calibration uncertainties. In particular, distortions in the wavelength solution on echelle order scales are estimated to contribute approximately half the total systematic error component, but our estimate is model dependent and may therefore under or overestimate the real effect, if present. To assist future mu-variation analyses of this kind, and other astrophysical studies of H_2 in general, we provide a compilation of the most precise laboratory wavelengths and calculated parameters important for absorption-line work with H_2 transitions redwards of the hydrogen Lyman limit.
79 - A.Ivanchik 2002
The possible cosmological variation of the proton-to-electron mass ratio was estimated by measuring the H_2 wavelengths in the high-resolution spectrum of the quasar Q~0347-382. Our analysis yielded an estimate for the possible deviation of mu value in the past, 10 Gyr ago: for the unweighted value $Delta mu / mu = (3.0pm2.4)times10^{-5}$; for the weighted value [ Delta mu / mu = (5.02pm1.82)times10^{-5}] Since the significance of the both results does not exceed 3$sigma$, further observations are needed to increase the statistical significance. In any case, this result may be considered as the most stringent estimate on an upper limit of a possible variation of mu (95% C.L.): [ |Delta mu / mu| < 8times 10^{-5} ] This value serves as an effective tool for selection of models determining a relation between possible cosmological deviations of the fine-structure constant alpha and the elementary particle masses (m$_p$, m$_e$, etc.).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا