ترغب بنشر مسار تعليمي؟ اضغط هنا

The significant effects of stellar mass estimation on galaxy pair fractions

59   0   0.0 ( 0 )
 نشر من قبل Philip Grylls
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There exist discrepancies in measurements of the number and evolution of galaxy pairs. The pair fraction appears to be sensitive to both the criteria used to select pair fraction and the methods used to analyze survey data. This paper explores the connection between stellar mass estimation and the pair fraction of galaxies making use of STEEL, the Statistical sEmi-Emprical modeL. Previous results have found the pair fraction is sensitive to choices made when selecting what qualifies as a pair, for example luminosity or stellar mass selections. We find that different estimations of stellar mass such as photometric choice mass-to-light ratio or IMF that effect the stellar mass function also significantly affect the derived galaxy pair fraction. By making use of the galaxy halo connection we investigate these systematic affects on the pair fraction. We constrain the galaxy halo connection using the stellar-mass-halo-mass relationship for two observed stellar mass functions, and the Illustris TNG stellar mass function. Furthermore, we also create a suite of toy models where the stellar-mass-halo-mass relationship is manually changed. For each stellar-mass-halo-mass relation the pair fraction, and its evolution, are generated. We find that enhancements to the number density of high mass galaxies cause steepening of the stellar-mass-halo mass relation, resulting in a reduction of the pair fraction. We argue this is a considerable cause of bias that must be accounted for when comparing pair fractions.



قيم البحث

اقرأ أيضاً

473 - Casey Papovich 2018
We study the effects of galaxy environment on the evolution of the stellar-mass function (SMF) over 0.2 < z < 2.0 using the FourStar Galaxy Evolution (ZFOURGE) survey and NEWFIRM Medium-Band Survey (NMBS) down to the stellar-mass completeness limit, log M / Msun > 9.0 (9.5) at z = 1.0 (2.0). We compare the SMFs for quiescent and star-forming galaxies in the highest and lowest environments using a density estimator based on the distance to the galaxies third-nearest neighbors. For star-forming galaxies, at all redshifts there are only minor differences with environment in the shape of the SMF. For quiescent galaxies, the SMF in the lowest densities shows no evolution with redshift, other than an overall increase in number density (phi*) with time. This suggests that the stellar-mass dependence of quenching in relatively isolated galaxies is both universal and does not evolve strongly. While at z >~ 1.5 the SMF of quiescent galaxies is indistinguishable in the highest and lowest densities, at lower redshifts it shows a rapidly increasing number density of lower-mass galaxies, log M / Msun ~= 9-10. We argue this evolution can account for all the redshift evolution in the shape of the total quiescent-galaxy SMF. This evolution in the quiescent-galaxy SMF at higher redshift (z > 1) requires an environmental-quenching efficiency that decreases with decreasing stellar mass at 0.5 < z < 1.5 or it would overproduce the number of lower-mass quiescent galaxies in denser environments. This requires a dominant environment process such as starvation combined with rapid gas depletion and ejection at z > 0.5 - 1.0 for galaxies in our mass range. The efficiency of this process decreases with redshift allowing other processes (such as galaxy interactions and ram-pressure stripping) to become more important at later times, z < 0.5.
We employ a large sample of 20171 optically-selected groups and clusters at 0.15 < z < 0.4 in the SDSS to investigate how the stacked stellar mass fraction varies across a wide range of total mass, $M_{500}$. Our study improves upon previous observat ional studies in a number of important ways, including having a much larger sample size, an explicit inclusion of the intracluster light (ICL) component, and a thorough examination of the accuracy of our total mass estimates via comparisons to simulations and weak lensing observations. We find that the stellar mass fraction depends only weakly on total mass and that the contribution of ICL to the total stellar mass fraction is significant (typically 20-40 per cent). Both of these findings are in excellent accordance with the predictions of cosmological simulations. Under the assumption of a Chabrier (Salpeter) IMF, the derived star formation efficiency ($f_{star}$/$f_{b}$, where $f_b=Omega_b/Omega_m$) is relatively low at 8 per cent (14 per cent) and is consistent with the global star formation efficiency of semi-analytic models that reproduce the galaxy stellar mass function. When our measured stellar mass fractions are combined with the observed relation between hot gas mass fraction and total mass from X-ray observations, our results imply that galaxy groups have significantly lower baryon fractions than massive clusters. Ejection of gas due to energetic AGN feedback (most likely at high redshift) provides a plausible mechanism for explaining the trends we observe.
We investigate the cosmic evolution of the ratio between black hole mass (MBH) and host galaxy total stellar mass (Mstellar) out to z~2.5 for a sample of 100 X-ray-selected moderate-luminosity, broad-line active galactic nuclei (AGNs) in the Chandra- COSMOS Legacy Survey. By taking advantage of the deep multi-wavelength photometry and spectroscopy in the COSMOS field, we measure in a uniform way the galaxy total stellar mass using a SED decomposition technique and the black hole mass based on broad emission line measurements and single-epoch virial estimates. Our sample of AGN host galaxies has total stellar masses of 10^10-12Msun, and black hole masses of 10^7.0-9.5Msun. Combining our sample with the relatively bright AGN samples from the literature, we find no significant evolution of the MBH-Mstellar relation with black hole-to-host total stellar mass ratio of MBH/Mstellar~0.3% at all redshifts probed. We conclude that the average black hole-to-host stellar mass ratio appears to be consistent with the local value within the uncertainties, suggesting a lack of evolution of the MBH-Mstellar relation up to z~2.5.
We present an investigation of the effects of asphericity on the estimates of total mass and gas mass fraction in galaxy clusters from X-ray observations. We model the aspherical shape of galaxy clusters by a triaxial model and compare the true total mass and the true total gas mass fraction with the corresponding quantities obtained with the assumption of spherical symmetry. In the triaxial model we allow the extent along the line of sight to vary in order to describe elongated and compressed cluster shapes. Using a sample of 10 ROSAT clusters and a recent CHANDRA observation we find the following results. For prolate or oblate shapes the difference between triaxial and spherical model both in the mass and in the gas mass fraction are negligible (less than 3 %). For more aspherical shapes the total mass is underestimated (overestimated) in the centre, if the cluster is compressed (elongated). The gas mass fraction is overestimated for compressed clusters and slightly underestimated for elongated clusters. Comparing X-ray masses with gravitational lensing estimates, we find that elongations along the line of sight can resolve discrepancies of masses determined by the two different methods of up to ~30 %. The combination of Sunyaev-Zeldovich and X-ray observations is useful to measure the elongation of the cluster along the line of sight. As an application, we estimate the elongation of the cluster CL0016+16 with two different approaches, Sunyaev-Zeldovich measurements and comparison of weak lensing and X-ray masses, and find reasonable agreement.
We investigate models of the Milky Way disc taking into account simultaneously the bar and a two-armed quasi-static spiral pattern. Away from major resonance overlaps, the mean stellar radial motions in the plane are essentially a linear superpositio n of the isolated effects of the bar and spirals. Thus, provided the bar is strong enough, even in the presence of spiral arms, these mean radial motions are predominantly affected by the Galactic bar for large scale velocity fluctuations. This is evident when comparing the peculiar line-of-sight velocity power spectrum of our coupled models with bar-only models. However, we show how forthcoming spectroscopic surveys could disentangle bar-only non-axisymmetric models of the Galaxy from models in which spiral arms have a significant amplitude. We also point out that overlaps of low-order resonances are sufficient to enhance stellar churning within the disc, even when the spirals amplitude is kept constant. Nevertheless, for churning to be truly non-local, stronger or (more likely) transient amplitudes would be needed: otherwise the disc is actually mostly unaffected by churning in the present models. Finally, regarding vertical breathing modes, the combined effect of the bar and spirals on vertical motions is a clear non-linear superposition of the isolated effects of both components, significantly superseding the linear superposition of modes produced by each perturber separately, thereby providing an additional effect to consider when analysing the observed breathing mode of the Galactic disc in the extended Solar neighbourhood.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا