ﻻ يوجد ملخص باللغة العربية
Two classes of time-periodic systems of ordinary differential equations with a small nonnegative parameter, those with fast and slow time, are studied. Right-hand sides of these systems are three times continuously differentiable with respect to phase variables and the parameter, the corresponding unperturbed systems are autonomous, conservative and have nine equilibrium points. For the perturbed systems, which do not depend on the parameter explicitly, we obtain the conditions yielding that the initial system has a certain number of two-dimensional invariant surfaces homeomorphic to a torus for each sufficiently small values of parameter and the formulas of such surfaces. A class of systems with seven invariant surfaces enclosing different configurations of equilibrium points is studied as an example of applications of our method.
We consider the classical problem of the continuation of periodic orbits surviving to the breaking of invariant lower dimensional resonant tori in nearly integrable Hamiltonian systems. In particular we extend our previous results (presented in CNSNS
We reconsider the classical problem of the continuation of degenerate periodic orbits in Hamiltonian systems. In particular we focus on periodic orbits that arise from the breaking of a completely resonant maximal torus. We here propose a suitable no
In this paper, we show the existence of non contractible periodic orbits in Hamiltonian systems defined on $T^*T^n$ separating two Lagrangian tori under certain cone assumption. Our result answers a question of Polterovich in cite{P} in a sharp way.
We consider the motion of an electron in an atom subjected to a strong linearly polarized laser field. We identify the invariant structures organizing a very specific subset of trajectories, namely recollisions. Recollisions are trajectories which fi
The KAM (Kolmogorov-Arnold-Moser) theorem guarantees the stability of quasi-periodic invariant tori by perturbation in some Hamiltonian systems. Michel Herman proved a similar result for quasi-periodic motions, with $k$-dimensional involutive manifol