ﻻ يوجد ملخص باللغة العربية
Although Vietnamese is the 17th most popular native-speaker language in the world, there are not many research studies on Vietnamese machine reading comprehension (MRC), the task of understanding a text and answering questions about it. One of the reasons is because of the lack of high-quality benchmark datasets for this task. In this work, we construct a dataset which consists of 2,783 pairs of multiple-choice questions and answers based on 417 Vietnamese texts which are commonly used for teaching reading comprehension for elementary school pupils. In addition, we propose a lexical-based MRC method that utilizes semantic similarity measures and external knowledge sources to analyze questions and extract answers from the given text. We compare the performance of the proposed model with several baseline lexical-based and neural network-based models. Our proposed method achieves 61.81% by accuracy, which is 5.51% higher than the best baseline model. We also measure human performance on our dataset and find that there is a big gap between machine-model and human performances. This indicates that significant progress can be made on this task. The dataset is freely available on our website for research purposes.
The development of natural language processing (NLP) in general and machine reading comprehension in particular has attracted the great attention of the research community. In recent years, there are a few datasets for machine reading comprehension t
Over 97 million people speak Vietnamese as their native language in the world. However, there are few research studies on machine reading comprehension (MRC) for Vietnamese, the task of understanding a text and answering questions related to it. Due
Large-scale and high-quality corpora are necessary for evaluating machine reading comprehension models on a low-resource language like Vietnamese. Besides, machine reading comprehension (MRC) for the health domain offers great potential for practical
In this paper, we aim to extract commonsense knowledge to improve machine reading comprehension. We propose to represent relations implicitly by situating structured knowledge in a context instead of relying on a pre-defined set of relations, and we
Multi-choice Machine Reading Comprehension (MMRC) aims to select the correct answer from a set of options based on a given passage and question. Due to task specific of MMRC, it is non-trivial to transfer knowledge from other MRC tasks such as SQuAD,