ﻻ يوجد ملخص باللغة العربية
In this paper, we aim to address issues of (1) joint spatial-temporal modeling and (2) side information injection for deep-learning based in-loop filter. For (1), we design a deep network with both progressive rethinking and collaborative learning mechanisms to improve quality of the reconstructed intra-frames and inter-frames, respectively. For intra coding, a Progressive Rethinking Network (PRN) is designed to simulate the human decision mechanism for effective spatial modeling. Our designed block introduces an additional inter-block connection to bypass a high-dimensional informative feature before the bottleneck module across blocks to review the complete past memorized experiences and rethinks progressively. For inter coding, the current reconstructed frame interacts with reference frames (peak quality frame and the nearest adjacent frame) collaboratively at the feature level. For (2), we extract both intra-frame and inter-frame side information for better context modeling. A coarse-to-fine partition map based on HEVC partition trees is built as the intra-frame side information. Furthermore, the warped features of the reference frames are offered as the inter-frame side information. Our PRN with intra-frame side information provides 9.0% BD-rate reduction on average compared to HEVC baseline under All-intra (AI) configuration. While under Low-Delay B (LDB), Low-Delay P (LDP) and Random Access (RA) configuration, our PRN with inter-frame side information provides 9.0%, 10.6% and 8.0% BD-rate reduction on average respectively. Our project webpage is https://dezhao-wang.github.io/PRN-v2/.
Deep learning techniques have shown their superior performance in dermatologist clinical inspection. Nevertheless, melanoma diagnosis is still a challenging task due to the difficulty of incorporating the useful dermatologist clinical knowledge into
Deep learning has demonstrated radiograph screening performances that are comparable or superior to radiologists. However, recent studies show that deep models for thoracic disease classification usually show degraded performance when applied to exte
Video compression is a basic requirement for consumer and professional video applications alike. Video coding standards such as H.264/AVC and H.265/HEVC are widely deployed in the market to enable efficient use of bandwidth and storage for many video
The performance of deep learning-based methods strongly relies on the number of datasets used for training. Many efforts have been made to increase the data in the medical image analysis field. However, unlike photography images, it is hard to genera
Radiographs are used as the most important imaging tool for identifying spine anomalies in clinical practice. The evaluation of spinal bone lesions, however, is a challenging task for radiologists. This work aims at developing and evaluating a deep l