ترغب بنشر مسار تعليمي؟ اضغط هنا

Combining Progressive Rethinking and Collaborative Learning: A Deep Framework for In-Loop Filtering

116   0   0.0 ( 0 )
 نشر من قبل Dezhao Wang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we aim to address issues of (1) joint spatial-temporal modeling and (2) side information injection for deep-learning based in-loop filter. For (1), we design a deep network with both progressive rethinking and collaborative learning mechanisms to improve quality of the reconstructed intra-frames and inter-frames, respectively. For intra coding, a Progressive Rethinking Network (PRN) is designed to simulate the human decision mechanism for effective spatial modeling. Our designed block introduces an additional inter-block connection to bypass a high-dimensional informative feature before the bottleneck module across blocks to review the complete past memorized experiences and rethinks progressively. For inter coding, the current reconstructed frame interacts with reference frames (peak quality frame and the nearest adjacent frame) collaboratively at the feature level. For (2), we extract both intra-frame and inter-frame side information for better context modeling. A coarse-to-fine partition map based on HEVC partition trees is built as the intra-frame side information. Furthermore, the warped features of the reference frames are offered as the inter-frame side information. Our PRN with intra-frame side information provides 9.0% BD-rate reduction on average compared to HEVC baseline under All-intra (AI) configuration. While under Low-Delay B (LDB), Low-Delay P (LDP) and Random Access (RA) configuration, our PRN with inter-frame side information provides 9.0%, 10.6% and 8.0% BD-rate reduction on average respectively. Our project webpage is https://dezhao-wang.github.io/PRN-v2/.



قيم البحث

اقرأ أيضاً

Deep learning techniques have shown their superior performance in dermatologist clinical inspection. Nevertheless, melanoma diagnosis is still a challenging task due to the difficulty of incorporating the useful dermatologist clinical knowledge into the learning process. In this paper, we propose a novel knowledge-aware deep framework that incorporates some clinical knowledge into collaborative learning of two important melanoma diagnosis tasks, i.e., skin lesion segmentation and melanoma recognition. Specifically, to exploit the knowledge of morphological expressions of the lesion region and also the periphery region for melanoma identification, a lesion-based pooling and shape extraction (LPSE) scheme is designed, which transfers the structure information obtained from skin lesion segmentation into melanoma recognition. Meanwhile, to pass the skin lesion diagnosis knowledge from melanoma recognition to skin lesion segmentation, an effective diagnosis guided feature fusion (DGFF) strategy is designed. Moreover, we propose a recursive mutual learning mechanism that further promotes the inter-task cooperation, and thus iteratively improves the joint learning capability of the model for both skin lesion segmentation and melanoma recognition. Experimental results on two publicly available skin lesion datasets show the effectiveness of the proposed method for melanoma analysis.
Deep learning has demonstrated radiograph screening performances that are comparable or superior to radiologists. However, recent studies show that deep models for thoracic disease classification usually show degraded performance when applied to exte rnal data. Such phenomena can be categorized into shortcut learning, where the deep models learn unintended decision rules that can fit the identically distributed training and test set but fail to generalize to other distributions. A natural way to alleviate this defect is explicitly indicating the lesions and focusing the model on learning the intended features. In this paper, we conduct extensive retrospective experiments to compare a popular thoracic disease classification model, CheXNet, and a thoracic lesion detection model, CheXDet. We first showed that the two models achieved similar image-level classification performance on the internal test set with no significant differences under many scenarios. Meanwhile, we found incorporating external training data even led to performance degradation for CheXNet. Then, we compared the models internal performance on the lesion localization task and showed that CheXDet achieved significantly better performance than CheXNet even when given 80% less training data. By further visualizing the models decision-making regions, we revealed that CheXNet learned patterns other than the target lesions, demonstrating its shortcut learning defect. Moreover, CheXDet achieved significantly better external performance than CheXNet on both the image-level classification task and the lesion localization task. Our findings suggest improving annotation granularity for training deep learning systems as a promising way to elevate future deep learning-based diagnosis systems for clinical usage.
340 - Zhao Wang , Changyue Ma , Yan Ye 2021
Video compression is a basic requirement for consumer and professional video applications alike. Video coding standards such as H.264/AVC and H.265/HEVC are widely deployed in the market to enable efficient use of bandwidth and storage for many video applications. To reduce the coding artifacts and improve the compression efficiency, neural network based loop filtering of the reconstructed video has been developed in the literature. However, loop filtering is a challenging task due to the variation in video content and sampling densities. In this paper, we propose a on-line scaling based multi-density attention network for loop filtering in video compression. The core of our approach lies in several aspects: (a) parallel multi-resolution convolution streams for extracting multi-density features, (b) single attention branch to learn the sample correlations and generate mask maps, (c) a channel-mutual attention procedure to fuse the data from multiple branches, (d) on-line scaling technique to further optimize the output results of network according to the actual signal. The proposed multi-density attention network learns rich features from multiple sampling densities and performs robustly on video content of different resolutions. Moreover, the online scaling process enhances the signal adaptability of the off-line pre-trained model. Experimental results show that 10.18% bit-rate reduction at the same video quality can be achieved over the latest Versatile Video Coding (VVC) standard. The objective performance of the proposed algorithm outperforms the state-of-the-art methods and the subjective quality improvement is obvious in terms of detail preservation and artifact alleviation.
The performance of deep learning-based methods strongly relies on the number of datasets used for training. Many efforts have been made to increase the data in the medical image analysis field. However, unlike photography images, it is hard to genera te centralized databases to collect medical images because of numerous technical, legal, and privacy issues. In this work, we study the use of federated learning between two institutions in a real-world setting to collaboratively train a model without sharing the raw data across national boundaries. We quantitatively compare the segmentation models obtained with federated learning and local training alone. Our experimental results show that federated learning models have higher generalizability than standalone training.
Radiographs are used as the most important imaging tool for identifying spine anomalies in clinical practice. The evaluation of spinal bone lesions, however, is a challenging task for radiologists. This work aims at developing and evaluating a deep l earning-based framework, named VinDr-SpineXR, for the classification and localization of abnormalities from spine X-rays. First, we build a large dataset, comprising 10,468 spine X-ray images from 5,000 studies, each of which is manually annotated by an experienced radiologist with bounding boxes around abnormal findings in 13 categories. Using this dataset, we then train a deep learning classifier to determine whether a spine scan is abnormal and a detector to localize 7 crucial findings amongst the total 13. The VinDr-SpineXR is evaluated on a test set of 2,078 images from 1,000 studies, which is kept separate from the training set. It demonstrates an area under the receiver operating characteristic curve (AUROC) of 88.61% (95% CI 87.19%, 90.02%) for the image-level classification task and a mean average precision ([email protected]) of 33.56% for the lesion-level localization task. These results serve as a proof of concept and set a baseline for future research in this direction. To encourage advances, the dataset, codes, and trained deep learning models are made publicly available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا