ﻻ يوجد ملخص باللغة العربية
This paper presents an algorithm for indoor layout estimation and reconstruction through the fusion of a sequence of captured images and LiDAR data sets. In the proposed system, a movable platform collects both intensity images and 2D LiDAR information. Pose estimation and semantic segmentation is computed jointly by aligning the LiDAR points to line segments from the images. For indoor scenes with walls orthogonal to floor, the alignment problem is decoupled into top-down view projection and a 2D similarity transformation estimation and solved by the recursive random sample consensus (R-RANSAC) algorithm. Hypotheses can be generated, evaluated and optimized by integrating new scans as the platform moves throughout the environment. The proposed method avoids the need of extensive prior training or a cuboid layout assumption, which is more effective and practical compared to most previous indoor layout estimation methods. Multi-sensor fusion allows the capability of providing accurate depth estimation and high resolution visual information.
Camera and 3D LiDAR sensors have become indispensable devices in modern autonomous driving vehicles, where the camera provides the fine-grained texture, color information in 2D space and LiDAR captures more precise and farther-away distance measureme
Modern high-definition LIDAR is expensive for commercial autonomous driving vehicles and small indoor robots. An affordable solution to this problem is fusion of planar LIDAR with RGB images to provide a similar level of perception capability. Even t
Multi-object tracking (MOT) with camera-LiDAR fusion demands accurate results of object detection, affinity computation and data association in real time. This paper presents an efficient multi-modal MOT framework with online joint detection and trac
In autonomous driving, using a variety of sensors to recognize preceding vehicles in middle and long distance is helpful for improving driving performance and developing various functions. However, if only LiDAR or camera is used in the recognition s
Given a single RGB panorama, the goal of 3D layout reconstruction is to estimate the room layout by predicting the corners, floor boundary, and ceiling boundary. A common approach has been to use standard convolutional networks to predict the corners