ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluating the Advantage of Adaptive Strategies for Quantum Channel Distinguishability

190   0   0.0 ( 0 )
 نشر من قبل Vishal Katariya
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper contributes further to the resource theory of asymmetric distinguishability for quantum strategies, as introduced recently by [Wang et al., Phys. Rev. Research 1, 033169 (2019)]. The fundamental objects in the resource theory are pairs of quantum strategies, which are generalizations of quantum channels that provide a framework to describe any arbitrary quantum interaction. We provide semi-definite program characterizations of the one-shot operational quantities in this resource theory. We then apply these semi-definite programs to study the advantage conferred by adaptive strategies in discrimination and distinguishability distillation of generalized amplitude damping channels.



قيم البحث

اقرأ أيضاً

We provide a simple example that illustrates the advantage of adaptive over non-adaptive strategies for quantum channel discrimination. In particular, we give a pair of entanglement-breaking channels that can be perfectly discriminated by means of an adaptive strategy that requires just two channel evaluations, but for which no non-adaptive strategy can give a perfect discrimination using any finite number of channel evaluations.
Many quantum mechanical experiments can be viewed as multi-round interactive protocols between known quantum circuits and an unknown quantum process. Fully quantum coherent access to the unknown process is known to provide an advantage in many discri mination tasks compared to when only incoherent access is permitted, but it is unclear if this advantage persists when the process is noisy. Here, we show that a quantum advantage can be maintained when distinguishing between two noisy single qubit rotation channels. Numerical and analytical calculations reveal a distinct transition between optimal performance by fully coherent and fully incoherent protocols as a function of noise strength. Moreover, the size of the region of coherent quantum advantage shrinks inverse polynomially in the number of channel uses, and in an intermediate regime an improved strategy is a hybrid of fully-coherent and fully-incoherent subroutines. The fully coherent protocol is based on quantum signal processing, suggesting a generalizable algorithmic framework for the study of quantum advantage in the presence of realistic noise.
Quantum channel estimation and discrimination are fundamentally related information processing tasks of interest in quantum information science. In this paper, we analyze these tasks by employing the right logarithmic derivative Fisher information an d the geometric Renyi relative entropy, respectively, and we also identify connections between these distinguishability measures. A key result of our paper is that a chain-rule property holds for the right logarithmic derivative Fisher information and the geometric Renyi relative entropy for the interval $alphain(0,1) $ of the Renyi parameter $alpha$. In channel estimation, these results imply a condition for the unattainability of Heisenberg scaling, while in channel discrimination, they lead to improved bounds on error rates in the Chernoff and Hoeffding error exponent settings. More generally, we introduce the amortized quantum Fisher information as a conceptual framework for analyzing general sequential protocols that estimate a parameter encoded in a quantum channel, and we use this framework, beyond the aforementioned application, to show that Heisenberg scaling is not possible when a parameter is encoded in a classical-quantum channel. We then identify a number of other conceptual and technical connections between the tasks of estimation and discrimination and the distinguishability measures involved in analyzing each. As part of this work, we present a detailed overview of the geometric Renyi relative entropy of quantum states and channels, as well as its properties, which may be of independent interest.
We consider sequential hypothesis testing between two quantum states using adaptive and non-adaptive strategies. In this setting, samples of an unknown state are requested sequentially and a decision to either continue or to accept one of the two hyp otheses is made after each test. Under the constraint that the number of samples is bounded, either in expectation or with high probability, we exhibit adaptive strategies that minimize both types of misidentification errors. Namely, we show that these errors decrease exponentially (in the stopping time) with decay rates given by the measured relative entropies between the two states. Moreover, if we allow joint measurements on multiple samples, the rates are increased to the respective quantum relative entropies. We also fully characterize the achievable error exponents for non-adaptive strategies and provide numerical evidence showing that adaptive measurements are necessary to achieve our bounds under some additional assumptions.
147 - Xin Wang , Mark M. Wilde 2019
This paper develops the resource theory of asymmetric distinguishability for quantum channels, generalizing the related resource theory for states [arXiv:1010.1030; arXiv:1905.11629]. The key constituents of the channel resource theory are quantum ch annel boxes, consisting of a pair of quantum channels, which can be manipulated for free by means of an arbitrary quantum superchannel (the most general physical transformation of a quantum channel). One main question of the resource theory is the approximate channel box transformation problem, in which the goal is to transform an initial channel box (or boxes) to a final channel box (or boxes), while allowing for an asymmetric error in the transformation. The channel resource theory is richer than its counterpart for states because there is a wider variety of ways in which this question can be framed, either in the one-shot or $n$-shot regimes, with the latter having parallel and sequential variants. As in our prior work [arXiv:1905.11629], we consider two special cases of the general channel box transformation problem, known as distinguishability distillation and dilution. For the one-shot case, we find that the optimal values of the various tasks are equal to the non-smooth or smooth channel min- or max-relative entropies, thus endowing all of these quantities with operational interpretations. In the asymptotic sequential setting, we prove that the exact distinguishability cost is equal to the channel max-relative entropy and the distillable distinguishability is equal to the amortized channel relative entropy of [arXiv:1808.01498]. This latter result can also be understood as a solution to Steins lemma for quantum channels in the sequential setting. Finally, the theory simplifies significantly for environment-seizable and classical--quantum channel boxes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا