ﻻ يوجد ملخص باللغة العربية
We improve upon all known lower bounds on the critical fugacity and critical density of the hard sphere model in dimensions two and higher. As the dimension tends to infinity our improvements are by factors of $2$ and $1.7$, respectively. We make these improvements by utilizing techniques from theoretical computer science to show that a certain Markov chain for sampling from the hard sphere model mixes rapidly at low enough fugacities. We then prove an equivalence between optimal spatial and temporal mixing for hard spheres to deduce our results.
We consider a continuous time Markov chain on a countable state space. We prove a joint large deviation principle (LDP) of the empirical measure and current in the limit of large time interval. The proof is based on results on the joint large deviati
We recover the Donsker-Varadhan large deviations principle (LDP) for the empirical measure of a continuous time Markov chain on a countable (finite or infinite) state space from the joint LDP for the empirical measure and the empirical flow proved in [2].
In this paper, we develop an in-depth analysis of non-reversible Markov chains on denumerable state space from a similarity orbit perspective. In particular, we study the class of Markov chains whose transition kernel is in the similarity orbit of a
Dealing with finite Markov chains in discrete time, the focus often lies on convergence behavior and one tries to make different copies of the chain meet as fast as possible and then stick together. There is, however, a very peculiar kind of discrete
We review recent results on the metastable behavior of continuous-time Markov chains derived through the characterization of Markov chains as unique solutions of martingale problems.