ﻻ يوجد ملخص باللغة العربية
We present three distinct examples where phaseless auxiliary-field Quantum Monte Carlo (ph-AFQMC) can be reliably performed with a single-determinant trial wavefunction with essential symmetry breaking. We first utilized essential time-reversal symmetry breaking with ph-AFQMC to compute the triplet-singlet energy gap in the TS12 set. We found statistically better performance of ph-AFQMC with complex-restricted orbitals than with spin-unrestricted orbitals. We then showed the utilization of essential spin symmetry breaking when computing the single-triplet gap of a known biradicaloid, C$_{36}$. ph-AFQMC with spin-unrestricted Hartree-Fock (ph-AFQMC+UHF) fails catastrophically even with spin-projection and predicts no biradicaloid character. With approximate Brueckner orbitals obtained from regularized orbital-optimized second-order M{o}ller-Plesset perturbation theory ($kappa$-OOMP2), ph-AFQMC quantitatively captures strong biradicaloid character of C$_{36}$. Lastly, we applied ph-AFQMC to the computation of the quintet-triplet gap in a model iron porphyrin complex where brute-force methods with a small active space fail to capture the triplet ground state. We show unambiguously that neither triplet nor quintet is strongly correlated using UHF, $kappa$-OOMP2, and coupled-cluster with singles and doubles (CCSD) performed on UHF and $kappa$-OOMP2 orbitals. There is no essential symmetry breaking in this problem. By virtue of this, we were able to perform UHF+ph-AFQMC reliably with a cc-pVTZ basis set and predicted a triplet ground state for this model geometry. The largest ph-AFQMC in this work correlated 186 electrons in 956 orbitals. Our work highlights the utility, scalability, and accuracy of ph-AFQMC with a single determinant trial wavefunction with essential symmetry breaking for systems mainly dominated by dynamical correlation with little static correlation.
Transition metal complexes are ubiquitous in biology and chemical catalysis, yet they remain difficult to accurately describe with ab initio methods due to the presence of a large degree of dynamic electron correlation, and, in some cases, strong sta
We assess the utility of Hartree-Fock (HF) trial wavefunctions in performing phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) on the uniform electron gas (UEG) model. The combination of ph-AFQMC with spin-restricted HF (RHF+ph-AFQMC), was fou
We investigate the viability of the phaseless finite temperature auxiliary field quantum Monte Carlo (ph-FT-AFQMC) method for ab initio systems using the uniform electron gas as a model. Through comparisons with exact results and finite temperature c
We investigate the use of optimized correlation consistent gaussian basis sets for the study of insulating solids with auxiliary-field quantum Monte Carlo (AFQMC). The exponents of the basis set are optimized through the minimization of the second or
We outline how auxiliary-field quantum Monte Carlo (AFQMC) can leverage graphical processing units (GPUs) to accelerate the simulation of solid state sytems. By exploiting conservation of crystal momentum in the one- and two-electron integrals we sho