ترغب بنشر مسار تعليمي؟ اضغط هنا

Biographical Memoir of Stirling Colgate

69   0   0.0 ( 0 )
 نشر من قبل Gordon Baym
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stirling Colgate was a remarkably imaginative physicist, an independent thinker with a wide breadth of interests and contagious enthusiasm, a born leader with enduring drive to attack fundamental problems in science. Among his many achievements, he founded the quantitative theory of stellar collapse and supernova explosions, and introduced numerical simulation into the astrophysical toolbox. He brought strong physical intuition to both theory and experiment, in the sciences of nuclear weapons, magnetic and inertial fusion, as well as astrophysics.



قيم البحث

اقرأ أيضاً

Stephen Hawkings contributions to the understanding of gravity, black holes and cosmology were truly immense. They began with the singularity theorems in the 1960s followed by his discovery that black holes have an entropy and consequently a finite t emperature. Black holes were predicted to emit thermal radiation, what is now called Hawking radiation. He pioneered the study of primordial black holes and their potential role in cosmology. His organisation of and contributions to the Nuffield Workshop in 1982 consolidated the picture that the large-scale structure of the universe originated as quantum fluctuations during the inflationary era. Work on the interplay between quantum mechanics and general relativity resulted in his formulation of the concept of the wavefunction of the universe. The tension between quantum mechanics and general relativity led to his struggles with the information paradox concerning deep connections between these fundamental areas of physics. These achievements were all accomplished following the diagnosis during the early years of Stephens studies as a post-graduate student in Cambridge that he had incurable motor neuron disease -- he was given two years to live. Against all the odds, he lived a further 55 years. The distinction of his work led to many honours and he became a major public figure, promoting with passion the needs of disabled people. His popular best-selling book A Brief History of Time made cosmology and his own work known to the general public worldwide. He became an icon for science and an inspiration to all.
159 - N. W. Evans 2020
Donald Lynden-Bells many contributions to astrophysics encompass general relativity, galactic dynamics, telescope design and observational astronomy. In the 1960s, his papers on stellar dynamics led to fundamental insights into the equilibria of elli ptical galaxies, the growth of spiral patterns in disc galaxies and the stability of differentially rotating, self-gravitating flows. Donald introduced the ideas of `violent relaxation and `the gravothermal catastrophe in pioneering work on the thermodynamics of galaxies and negative heat capacities. He shared the inaugural Kavli Prize in Astrophysics in 2008 for his contributions to our understanding of quasars. His prediction that dead quasars or supermassive black holes may reside in the nuclei of nearby galaxies has been confirmed by multiple pieces of independent evidence. His work on accretion discs led to new insights into their workings, as well as the realisation that the infrared excess in T Tauri stars was caused by protostellar discs around these young stars. He introduced the influential idea of monolithic collapse of a gas cloud as a formation mechanism for the Milky Way Galaxy. As this gave way to modern ideas of merging and accretion as drivers of galaxy formation, Donald was the first to realise the importance of tidal streams as measures of the past history and present day gravity field of the Galaxy. Though primarily a theorist, Donald participated in one of the first observational programs to measure the large-scale streaming of nearby galaxies. This led to the discovery of the `Great Attractor. The depth and versatility of his contributions mark Donald out as one of the most influential and pre-eminent astronomers of his day.
Julian Besag was an outstanding statistical scientist, distinguished for his pioneering work on the statistical theory and analysis of spatial processes, especially conditional lattice systems. His work has been seminal in statistical developments ov er the last several decades ranging from image analysis to Markov chain Monte Carlo methods. He clarified the role of auto-logistic and auto-normal models as instances of Markov random fields and paved the way for their use in diverse applications. Later work included investigations into the efficacy of nearest neighbour models to accommodate spatial dependence in the analysis of data from agricultural field trials, image restoration from noisy data, and texture generation using lattice models.
We have constructed an unified framework for generalizing the finite-time thermodynamic behavior of statistically distinct bosonic and fermionic Stirling cycles with regenerative characteristics. In our formalism, working fluid consisting of particle s obeying Fermi-Dirac and Bose-Einstein statistics are treated under equal footing and modelled as a collection of non-interacting harmonic and fermionic oscillators. In terms of frequency and population of the two oscillators, we have provided an interesting generalization for the definitions of heat and work that are valid for classical as well as non-classical working fluids. Based on a generic setting under finite time relaxation dynamics, novel results on low and high temperature heat transfer rates are derived. Characterized by equal power, efficiency, entropy production, cycle time and coefficient of performance, thermodynamic equivalence between two types of Stirling cycles is established in the low temperature ``quantum regime.
We give combinatorial proofs of $q$-Stirling identities using restricted growth words. This includes a poset theoretic proof of Carlitzs identity, a new proof of the $q$-Frobenius identity of Garsia and Remmel and of Ehrenborgs Hankel $q$-Stirling de terminantal identity. We also develop a two parameter generalization to unify identities of Mercier and include a symmetric function version.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا