ﻻ يوجد ملخص باللغة العربية
The general relativistic Poynting-Robertson effect is a dissipative and non-linear dynamical system obtained by perturbing through radiation processes the geodesic motion of test particles orbiting around a spinning compact object, described by the Kerr metric. Using the Melnikov method we find that, in a suitable range of parameters, chaotic behavior is present in the motion of a test particle driven by the Poynting-Robertson effect in the Kerr equatorial plane.
It has been proved that the general relativistic Poynting-Robertson effect in the equatorial plane of Kerr metric shows a chaotic behavior for a suitable range of parameters. As a further step, we calculate the timescale for the onset of chaos throug
In this paper we investigate the three-dimensional (3D) motion of a test particle in a stationary, axially symmetric spacetime around a central compact object, under the influence of a radiation field. To this aim we extend the two-dimensional (2D) v
Objectives: A systematic study on the general relativistic Poynting-Robertson effect has been developed so far by introducing different complementary approaches, which can be mainly divided in two kinds: (1) improving the theoretical assessments and
We investigate the three-dimensional, general relativistic Poynting-Robertson effect in the case of rigidly rotating spherical source which emits radiation radially in the local comoving frame. Such radiation field is meant to approximate the field p
We determine for the first time in the literature the analytic form of the Rayleigh potential of the general relativistic Poynting-Robertson effect. The employed procedure is based on the use of an integrating factor and a new integration strategy wh